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ABSTRACT

Supporting design of innovative conceptual solutions is an important goal of design
research. Among various approaches to conceptual design, Building Blocks metaphor seems
the most common. Synthesis models based on Building Blocks metaphor support
development of design solutions by composition of a set of independent, modular structures
from their knowledge base. The richer this knowledge base (of structures, as well as ways in
which they can be combined, termed here as Building Blocks) is, the more the chances are for
producing otherwise innovative designs using the knowledge base. The paper argues that an
effective way of developing this knowledge is in terms of the basic set of building blocks. A
definition of basicness is developed, and a scheme for identifying the basic set of building

blocks, from among competing sets, is developed; finally, this scheme is explained using an

illustrative example.




1 INTRODUCTION

Conceptual design is an essential phase of engineering design process [1], and the
quality of the eventual design solution crucially depends on the quality of the concepts
generated in this phase. There are usually more than one solution to a design problem to a
design, and thus there is scope for producing better designs, if a large and wide-ranging
solution space could be explored. Supporting the generation of innovative designs Is,
therefore, important, as has been reiterated in the existing literature [2, 3, 4, 5].

A common metaphor for conceptual design is the Building Blocks metaphor. In this
metaphor, design solutions are composed of a set of individual identifiable parts. These parts
are such that their behaviours can be understood in isolation, and when these parts are put
together to form a solution, their individual behaviours can be composed to produce the overall
behaviour of the solution. Examples abound in design synthesis literature [1, 6,7, 8,9, 10,
11, 12, 13]. The models underlying these require

* a given set of structures which have provided and required functions, and
* ways of combining those structures.

The models can then support the synthesis of solutions, to design problems expressed
in terms of their functional requirements, as combinations of the given structures. The number
of novel designs produced would depend on how basic the constituting structures (ie, given
structures) and their ways of combination are. For example, if the given structures consist of
gear-boxes (none of which is a differential), and not gears and shafts, then the design of 2
differential gear-box cannot be supported. On the other hand, if the structures include gears
and shafts, then gear-boxes, differentials as well as many other designs can be supported.

Therefore, a parallel strand of research, examining the known solutions/structures, to
discover the constituent basic elements and their rules of combination, should be established.
Each time new original designs are found, these could be divided into either new basic

solutions. or new rules of combination, or both, which would increase the repertoire of

existing solutions and ways of combining them.




The synthesis models, together with a framework for supporting the extraction of this
knowledge (of basic structures and combination rules), could then support innovative design in
at least two ways:

* When no acceptable solution to a given problem can be found using the existing
basic structures and rules of combination, then one knows that new knowledge is
required.

* When a new solution to a given problem is found (which could not be produced
using the existing ideas and combination rules), the new basic structures and rules
of combination, of the new solution, extracted using the above framework, could
now be used in the model to support a whole range of additional designs.

In this paper, we present some ideas towards achieving these, and show some

examples of how these ideas might be applied in mechanical transmission design.

2 A DEFINITION OF THE BASICNESS OF A SET OF BUILDING BLOCKS AND AN
APPROACH TO IDENTIFY THE BASIC SET

It has been argued in the Introduction that the use of basic structures and their rules of
combination (hereafter called basic building blocks) in the synthesis of designs will increase the
chances of producing a greater number of innovative designs. Before this could be done, a
definition of what basic building blocks are, and a process for identifying them, are needed.

A set of building blocks is considered basic, for a set of structures, if the structures in
the latter set can be created by combining the building blocks of the former, but not the other
way around. Therefore, for a given set of structures, any other set of building blocks that can
be combined to express its structures will also be considered a basic set. There can be more
than one such set of building blocks. Among these sets, the one with the minimum number of
elements will be considered the basic set. The underlying idea behind this proposition is that
the building blocks constituting a more basic set can be more repeatedly used in the
construction of compound structures. Also, the more basic a set of building blocks is, the

more expressive it will be, and therefore, the larger will be the number of structures that can be




constructed from these building bl:;ncks. These propositions can be used to produce 2
comparative definition of basicness:
(1) A set of building blocks can be considered basic for constructing a set of structures, if
each structure in the latter set can be expressed as a combination of building blocks from
the former set.
(2) Between two sets of building blocks, each of which can be considered basic for a
given set of structures, the one which has the smaller number of building blocks is
considered more basic.
(3) Between two sets of building blocks of the same size, if one can be used to construct
all the structures that can be constructed from the other, and more, the former set is
considered more basic.

The usefulness of finding the basic building blocks, in the context of design, is
enabling the production of a large number of solutions, preferably from a small set of basic
building blocks; the larger the ratio of the number of solutions that can be produced by using a
set of basic building blocks to the number of basic building blocks, the more useful the basic
set would be. The minimum value of the ratio is considered one, when a set of building blocks
can be used to compose as many Structures as the building blocks used.

When comparing two sets of building blocks, to find the one that is more basic, the
general situation would be a combination of the cases (2) and (3) above, ie, the number of
building blocks in the sets as well as the number of structures that can be composed by the
building blocks from each set, will be different. In situations where cases (2) and (3) are
conflicting, case (3) will be given preference, as producing a large number of solutions from a
set of building blocks is the prime goal of this exercise. Suppose A and B denote two such
proposed basic sets, and the number of building blocks in them, No and Np respectively.
Suppose the number of structures that can be composed from the elements in A and B
respectively are Nsa and NsB. where the two sets of structures are Sa and Sg (such that either
SA ... SB,Or SB ... Sa,0rSa = Sg).

If the values of Na, Nsa, Nsp and Np are plotted on a two-dimensional space, where

Nga and Ngp are plotted along the ordinate while the Na and Np are plotted along the




abscissa, two points, given by co-ordinates (N, Nsa) and (N, Ngg) will be obtained. A
450 line through the origin of the co-ordinates would denote the usefulness line, on which the
number of basic building blocks will be the same as the number of structures composed from
them. A point above the usefulness line is considered here useful (as the number of basic
building blocks is less than the number of structures that can be composed from them), and a
point on the line is promising, and a point below, not promising (the number of basic building
blocks is more than the number of structures than can be composed from them). These
categorisations give a heuristic guidance as to which set of building blocks is more promising
to pursue. The orientation of a line drawn through the two points mentioned above can
represent how the two points are spaced relative to each other and to the Na/g-Nsa/sB plane.
There are five special cases™ (see Fig. 1):

Case A. When the two points coincide. In this case, Nao = Ng, and, Nsa = Nsp.

Case B. When /8 = 0, where f is the angle from the positive abscissa to the line. In this

case, Na > N, and, Nsa = Nsg.

Case C. When O0<fi<m2. In thig case, Nao > Np, and, Nga > Ngg.

Case D. When 8 = /2 . In this case, Nao = Np, and, Nga > Nsg.

Case E. When 72 < 3 < . In this case, No > Np, and, Nga < Ngg.

For each of these cases, more detailed relations can be found by investigating the
special cases for each. These cases differ from each other with respect to the locations of the
two points relative to the usefulness line. For instance, the special cases for Case B, when
Na>Ng, are:

Case B1. Np, shown in Fig. 2a, on the usefulness line, and N below the usefulness line.
This means:

Na > Nsg = Nga = Ng. This implies that using set B, which has a smaller number of
building blocks than set A, a set of structures, equal in number to those produced by A and
to itself, can be composed. This means that set B is more basic than set A, and is

promising, while set A is not promising.

* Apart from the five cases described, there can be more cases where Np < Nj.
However, these cases are equivalent to the cases where NB > Na, as A and B are
interchangeable, and therefore, not discussed separately.




Case B2. In Fig. 2b, both Np and N are above the usefulness line. This means:

Nsa = Nsg > Na > Np. This means that set B is more basic than set A, and both the sets
are useful.

Case B3. Np is above, and N on the usefulness line. This means:

Nsa = Ngg = Na > Np. This means that set B is more basic than set A, and is useful,
while A is promising (Fig. 2c).

Case B4. Np is above, and N below the usefulness line. This means:

Na > Ngp = Na > Np, and that set B is more basic than set A, and is useful, while A 1s
not promising (Fig. 2d).

Case B5. Both the points are below the usefulness line. This means:

Na > Np > Nsa = Ng. This means that set B is more basic than set A, but neither 1s
promising (Fig. 2e).

In actuality, however, the structures that can be composed from the building blocks
from a given set would be infinitely large, except in very restrictive cases. Moreover at the
outset, the set of building blocks which could be used for composing structures might not be
known. Therefore, we need to perform the process the other way around, ie, starting from a
given set of structures, identify a set of building blocks that will qualify as basic according to
the definition described before. This will require a systematic approach by which basic
building blocks can be identified from a given set of structures, where each structure has
specified functions.

Suppose the approach is to take each structure, such as structure E in Fig. 3, from the
given set, and divide it into an arbitrary number of distinct building blocks (ie, structures and
combination rules. such as structures E1, E2, E3, and rules R1, R2 and R3 from structure E),
each of which also has valid specific functions, such that these elements can be combined to re-
construct the original structures. By this very process, therefore, any set of building blocks so
produced will be adequate to re-construct all the given structures (ie, for two different sets A
and B of building blocks so produced, Nsa = Nsp). Therefore, cases C, D and E (where
Nsa # Nsp) are ruled out. Moreover, as the number of structures is now just any given set,

rather than all the structures which can be produced by a set of building blocks, the usefulness




line, and the consequent categorisations (such as useful, promising, etc.) lose their strong
significance. If this process is independently applied, twice, on a given set of structures, two
sets building blocks A and B, say, would be produced. Suppose each such set is hypothesised
as the basic building blocks set. Assuming that:

the number of elements in the set S 1s Ng,

the number of elements in the set A is N, and

the number of elements in the set B is Np,
we hypothesise that:

1. if Ng > Na, then set A more basic than set B;

2. if Ng = N, then both the sets are equally basic;

3. if Ng < N, then set B more basic than set A.

The actual process, however, is a dynamic one, and more complicated. Suppose we
start with a given set S of structures, and a number of hypothesised basic sets Bj (i =1, 2,..,
n) of building blocks, each of which can be used to produce the structures in S. Now,
suppose S is increased to S', by introducing more structures . If these additional structures are
also to be expressible in terms of the building blocks of the above basic sets, each of B; must
be increased (the increment in special cases could be zero) to Bi', by adding new building
blocks. With each such increase in S, each basic set would produce a new data-point in an Ng-
Ng; plot. If a set of values of Ng;, corresponding to a set of values of Ng, is plotted, these
would produce a set of curves, such as the curves Np; and Np; in Fig. 4, each showing the
change in size of the corresponding basic set with the change in size of the original set. The
ideal situation would be to obtain a basic set such that it becomes asymptotic to infinity at a
minimum value of Ns (eg, N3 in Fig. 4).

So, when there is more than one set of building blocks which can be considered basic
for a given set of structures S, one of which happens to be the smallest, one cannot say with
certainty that the same set will continue to remain the minimum set, with the necessary
increments in its size because of a continued increase in the size of S, unless all the building

blocks in the other sets can also be expressed using this minimum set. This means that the
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process for finding the basic set should take into account the distinct building blocks created by

all the competing sets, and try to minimise that set. So, the proposed approach is:

Step 1. Given a set of structures, find possible basic sets of building blocks for
constructing the structures in the set, by dividing at least one structure into an arbitrary
number of building blocks. If this is not possible, go to Step 4. Otherwise, follow Step 2
onwards.

Step 2. Produce a new set which is a set-union of the structures from these competing
basic sets, and the set of original structures. Take this as the new set of original structures.
Step 3. Produce a set-union of the building blocks in the basic sets. Eliminate all the
building blocks, in this new set, which can be expressed as a combination of other building

blocks in the set. The remaining set is now the new basic set.

Step 4. Increase the size of the original set of structures by putting in more structures.
Continue through Step 1 onwards, until the required increase in building blocks with an

increase in S 1s sufficiently small, eg, curve Ng;.

3 AN ILLUSTRATIVE EXAMPLE

As an example, let us consider two devices each of which can be used as nutcrackers
(see Fig. 5a). In device E, two handles Hy and Hj, which are pivoted at one end, are pressed
towards each other, with the nut in between them, to get the desired effect. In the other device,
a handle H is rotated to advance the attached screw R, which presses the nut, kept between the
other end of the screw and the anvil W. We consider a set S containing E and F as the set S of
structures for consideration. Suppose we consider only the handles Hy, H> and H, and, the
screw R. Their functional equivalents are fH;, fHy, fH and fR (Fig. 5b) respectively. fH;
and fH> are functionally equivalent, except that they work in opposite directions. Let us
propose Bj as a basic set of building blocks which contains fH}, fH and fR (amongst others)
as basic structures and the rule that "the input and output of two structures can be connected if

they have the same rotation" as a basic rule. So,
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Fig. 5 An Example of an Application of the Basicness Concept
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Np; =4 +x, where x is the total number of building blocks to describe the

remaining parts of the structures E and F.

Now suppose we propose a second basic set By which, apart from having the X
building blocks that were left while forming basic set By, has two other basic structures, 1€, a
simple lever fL (Fig. 6) and the screw fR (the same as that in set Bj), and the same rule as that
in set B; as a basic rule of combination. In other words, the two handles fH; and fH in set B
are replaced by the lever fL to form a second set B,. The sets are equivalent in terms of
functionally explaining the example structures A and B, since the considered portions in E and
F can be expressed in terms of the building blocks of these basic sets. The number Np» of
building blocks in set B2 is given by

Np2=3+X

Note that all the building blocks in set By also can be expressed using the building
blocks in B», see Fig. 6. If the structures in sets B; and B> are added to S to produce the new
structure-set S', the number Ng' of structures in S' is given by

Ng=6+X

Here, Ng' > Npj > Np», and Np2 is the present basic set. The points produced in this
process are plotted in Fig. 7. The number of structures in S' can be increased now, and the
same process can go on.

For any such attempt to be successful, what we need is a framework within which the
functions provided by a structure, and the functions that are to be provided to the structure in
order that it provides a specific function, can be deduced and checked, and assumed ways of
combining structures can be validated and realised. The next three sections outline some

preliminary ideas about such a framework.

4 SUMMARY AND CONCLUSIONS

In this paper, it is argued that one way of supporting conceptual design of innovative

solutions is providing synthesis models, based on Building Blocks metaphor, with a
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knowledge base of the basic building blocks (structures and rules of combination) of the
existing designs. The basic set of building blocks for a given set of structures is defined as the
minimal validated set of structures and their rules of combination required to describe the given
set of structures. The underlying reason behind the approach is that the more basic a set of
building blocks are, the wider range is the solution space that it can describe, and hence the
more the potential it has for producing innovative designs. With the evolving technology, each
new solution to a design problem, which cannot be described by the set of basic building
blocks in the existing knowledge base, would lead to new basic blocks being incorporated into
the knowledge base, so that the model could then be used to support design of classes of
otherwise innovative designs. An approach for identifying the most basic set from a number of
potentially basic sets is proposed, and the approach 1s illustrated using an example.

Further work includes testing the feasibility of the approach for large scale applications,

and its impact on the performance of the synthesis models.
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