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Synthesis of feedback-based design concepts for sensors 

We explore an approach to synthesize concepts of a class of sensors, where a quantity is 
sensed indirectly after nullifying its effect by using negative feedback. These sensors use 
negative feedback to increase the dynamic range of operation without compromising the 
sensitivity and resolution. The synthesis technique uses knowledge about existing 
phenomena to come up with an approach to synthesize concepts of sensors and also study 
their interactions with their surroundings, so as to generate robust designs. The approach 
uses a database of building blocks which are based on physical laws and effects that 
capture the transduction rules underlying the working principles of sensors. A simplified 
variant of the SAPPhIRE model of causality, which also uses physical laws and effects, 
has been adapted to represent the building blocks. SAPPhIRE model had been used 
earlier to understand analysis and synthesis of conceptual designs. We have adapted it 
here for automated generation of concepts.  The novelty of the approach lies in the way 
and the ease with which it constructs a graph which is a super-set of the concept-space. 
The individual concepts are extracted out of the graph at a later point in time. The 
extraction of the concepts is done by using a modified breadth-first search algorithm 
which detects loops in the graph. The usage of breadth-first search algorithm for loop 
detection is novel, as we have demonstrated that it performs better than depth-first search 
algorithm for the specific problem. The technique has been implemented as a web-based 
application. For the sensor problems attempted, a number of existing patents were found 
that were based on the concepts that were generated by the synthesis algorithm, thus 
emphasizing the usefulness of the designs produced. The tool generated 35 concepts for 
accelerometers, out of which 2 concepts were found in patents.  The synthesis approach 
also proposed new, feasible sensor concepts, thereby indicating its potential as a 
stimulator for enhancing creativity of designers. Automated generation of feedback-based 
sensor designs is a novel outcome of this approach. 

Keywords: conceptual design; computational design synthesis; functional modelling; 

indirect-sensing; closed loop;  

1. Introduction 

Market research predicts high demand for sensors in the near future (Wintergreen Research 2014; 
Freedonia Inc. 2015; Transparency Market Research 2015). To have a competitive edge, businesses need 
to be able to offer a variety of sensor designs and also push them to the market in the shortest possible 
time (George Stalk 1988; Thusu 2011). This research addresses this aspect by providing a support to 
assist the sensor designers for a fast generation of a variety of sensor design concepts.  

Sensor designing process involves significant manual effort, along with past experience 
(Mukherjee and Fedder 1997; Antonsson and Cagan 2005). During the process of designing, the phase in 
which concepts are developed is called the conceptual design phase (Pahl and Beitz 1996). Researchers 
have observed that the number of concepts explored has a positive influence on the variety of solutions 
produced (Cavallucci 2002; Srinivasan and Chakrabarti 2009; Srinivasan and Chakrabarti 2010). 
However, manual exploration of a large concept-space is not possible. Various approaches for concept 
generation have been proposed by researchers. Computer-based conceptual design synthesis is an area of 
research that focuses on approaches to computationally support fast generation and exploration of the 
concept-space; a concept-space is a set of all concepts for the solutions of a problem. An overview of the 
computer-based design synthesis research is available in (Chakrabarti et al. 2011). In this research, 
computer-based design synthesis technique is used to achieve the above mentioned goals. 

 One approach that a number of researchers (Chakrabarti and Bligh 1996; Zavbi and Duhovnik 
2000; Nagel et al. 2007; Srinivasan and Chakrabarti 2009) have adopted is to use physical laws and 
effects as building-blocks to generate concepts. This paper adapts this approach – building-block-based 
synthesis using physical effects – for conceptual designs of sensors. In particular, it focuses on a class of 
sensors that use negative feedback to increase the dynamic range of operation without compromising the 
sensitivity and resolution (Krishnan et al. 2012). Feedback sensors are an important class of sensors. 
According to market research the market share of feedback (i.e. closed-loop) sensors is increasing and 
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will be more than  that of  direct (i.e. open-loop) sensors by 2020 (marketsandmarkets.com 2015). One 
such sensor is discussed next. 

A force-balanced capacitive accelerometer, as shown in Fig. 1, is an example of a feedback-
based sensor. Here, the acceleration induced displacement of the proof-mass, as shown in Fig. 2, is 
nullified by applying electrostatic force created by the balancing combs. The electrical voltage to the 
feedback combs is correlated to the acceleration to be measured. The feedback sensing mechanism uses 
the capacitance of the sensing combs to sense the displacement of the proof-mass. In contrast to the open-
loop accelerometer where the sensitivity (mass/stiffness) and resonance frequency (square root of 
stiffness over mass) oppose each other, in the force-balanced accelerometer both sensitivity and 
resonance frequency can be independently tuned. 

The specific objective of this paper is to develop a support for designers, to automatically 
generate concepts of feedback sensors and explore them. The intention is not to automate the entire 
design process, but to use the power of automation to improve the variety of the concepts explored by the 
designers at the early stage of the design process. Since loop is an inherent part in any feedback sensor (as 
shown in Fig. 2), loops play an important role in any feedback sensor synthesis algorithm. 

 

Fig. 1 Schematic of a force-balanced capacitive accelerometer 

 

 

Fig. 2 Simulink (MathWorks Inc. 2015) representation of the block-diagram of the feedback principle 

1.1. Related research 

According to existing literature, computer-aided conceptual design research has adopted two broad 
approaches; one is the analogy-based approach and the other is the synthesis-based approach. Analogy-
based approach can be classified into two categories: case-based (Goel et al. 1997; Watson and Perera 
1997; Prabhakar and Goel 1998; Han and Lee 2006; Voss et al. 2012; Maher and Pu 2014) and bio-
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inspired (Chakrabarti et al. 2005; Vattam et al. 2008; Wilson et al. 2009; Nagel and Stone 2012; Goel et 
al. 2013) designs. In both the analogy-based approaches, new designs are created by using knowledge 
from past designs. Existing designs are altered to meet the design requirements of a new problem. If the 
existing design comes from a biological system, it is called bio-inspired design; case-based design 
primarily focuses on engineering systems as cases for adaptation. It is observed that solutions produced 
by using the analogy-based approach often have a bias towards familiar solution principles (Schmitt 
1993) and as such, might lack variety, although this may not always be the case.  

Synthesis-based approach can be classified into two categories: function-based (Chakrabarti and 
Bligh 1994; Malmqvist et al. 1996; Liu et al. 2000; Hirtz et al. 2002; Zhou et al. 2002; Bryant et al. 2005) 
and grammar-based (Hsiao and Chen 1997; Peysakhov and Regli 2003; Wojnarowski et al. 2006; Helms 
et al. 2009; Kurtoglu et al. 2010) synthesis. In function-based synthesis, a functional model is proposed, 
and then the model is used to develop solutions. In grammar-based synthesis, the focus is to develop a 
formal grammar with a set of rules that can then act on a design vocabulary to transform an initial design 
into a variety of new designs. The grammar is based on the state of the system (Schmidt et al. 2000; 
Campbell et al. 2009) and as such, may or may not have an underlying function or physical effect. 

A number of researchers have used physical laws and effects as basic building blocks to develop 
functional models (Chakrabarti and Bligh 1996; Zavbi and Duhovnik 2000; Chakrabarti and Regno 2001; 
Zavbi and Rihtarsic 2010; Rihtarsic et al. 2012). This approach often generates solution principles with a 
greater variety, but occasionally ends up with a number of unrealistic solution principles. According to 
Chen et al. (2013) the reason for this is improper representation of physical quantities; Chen et al. (2013) 
have reported some progress in this direction by associating a flexible set of attributes to physical 
quantities. 

In TRIZ methodology (Cavallucci 2002; Ilevbare et al. 2013; Yan et al. 2014), physical laws and 
effects were used in the form of a catalogue to support innovative thinking. However, they have not been 
used for automated generation of concepts. Campbell (Campbell et al. 1999; Campbell 2000) developed a 
procedure to synthesize electro-mechanical devices using agents and also facilitated their quantitative 
evaluation using a catalogue of standard components; however, no feedback-based designs were reported. 
Bond graph technique was used by researchers for concept generation (Bracewell et al. 1993; Bracewell 
et al. 2001; Wu et al. 2008). Since bond graph technique only deals with energy-based physical laws, it 
cannot support relations which are based on signals. Synthesis of sensors by using function-based 
building blocks have also been reported (Zhou et al. 2002). But they were much restricted to a given 
topology. 

Various researchers have used graph grammars for synthesis (Starling and Shea 2005; Kurtoglu 
et al. 2006; Campbell et al. 2009; Helms et al. 2009; Kurtoglu et al. 2010; Koenigseder et al. 2015). They 
used grammar rules to generate new solution principles, but did not report any feedback-based concepts. 
In graph grammar technique, often a network is created with each node of the network representing a 
state or a concept (Koenigseder et al. 2015) and the links connecting these nodes representing the 
grammatical rules. The network represents the concepts space. The concept space may or may not be of 
finite size. 

  In all the reported cases, an exhaustive set of such solution principles or concepts would form 
the concept-space. However, generation of all solution principles is expensive, even though use of special 
algorithms such as bi-directional search makes it somewhat tolerable for smaller problems (Chakrabarti 
2001). The approach presented in this paper differs significantly from all previous works because of its 
ability to construct a finite graph corresponding to the concept-space ahead of finding individual 
concepts. By constructing the concept-space ahead, finding a concept is much easier than using all other 
techniques as mentioned in the literature.  

In this research we view sensors as a system that can be modelled as an input-output network. 
Among all the approaches that supports this view, we found SAPPhIRE (i.e. State-change, Action, Parts, 
Phenomenon, Inputs, oRgans and Effect) (Chakrabarti et al. 2005) model of causality to be most 
appropriate for our research problem. SAPPhIRE uses physical laws and effects as building blocks (see 
Appendix-A for more details) and can be represented as an input-output network. Analysis and synthesis 
of conceptual designs can both be explained using this model (Srinivasan and Chakrabarti 2009). 
According to Chakrabarti et al. (2013), SAPPhIRE model can be used to capture different views of 
function within a generic model of design; function exists at the various outcome levels of abstraction of 
the SAPPhIRE model. Thus, different views of function expressed in models like function-behavior-
structure (Gero and Neill 1998) and structure-behavior-function (Goel et al. 2009) also map into the 
SAPPhIRE model. Sensors are a class of devices that can be viewed as systems having functions that 
occupy the effect level of the SAPPhIRE model. Thus, synthesis of sensors by using SAPPhIRE model is 
possible. Although SAPPhIRE model is promising, it was never used before to describe or synthesize 
designs with feedback or to support quantitative analysis, where the magnitude of the changes produced 
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by a solution principle could be estimated as part of synthesis. In order to support these, a simplified 
version of SAPPhIRE model called SAPPhIRE-lite was proposed (Sarkar et al. 2015a). In this research, 
we use this as the model for constructing the building blocks to synthesize conceptual designs. Details of 
these two models are given in Appendix-A and Appendix-B.  

 

1.2. Proposed approach for synthesis 

In this paper, a unique approach has been proposed to efficiently develop a comprehensive set of 
interesting (explained in section 6) solution principles with feedback. The technique takes an abstract 
view of the world in which phenomenon plays an important role. Phenomena cause interactions between 
components and thus change their states. If we take a holistic view of the system with its environment, we 
can better understand the possible desired and undesired interactions between them. The paper presents a 
way to capture the functioning of a system along with its interactions with the environment. In this 
research, we have constructed a graph of all interacting phenomena (explained in section-4.5) and have 
used it to synthesize sensor concepts. We have used this approach to design concepts of sensors and study 
their robustness against un-desired interactions from the environment. However, in this paper, the focus is 
on synthesizing feedback sensor concepts using this technique.   

The proposed approach achieves this in five steps: (i) it proposes a representation for sensor 
concepts; (ii) it adapts a suitable model to capture the building blocks corresponding to the representation; 
(iii) it constructs a directed graph using the building blocks in linear-time; the graph corresponds to a 
super-set of concept-spaces for all types of sensors that we can generate; it also represents all interacting 
phenomena between a system and its surroundings; (iv) for a given specification of the intended sensor, it 
selects concepts, which are represented as paths in the directed graph, ranked with respect to a cost 
associated with the path; (v) it uses heuristic rules to avoid un-interesting concepts from being generated. 

The use of heuristic rules to remove un-interesting solutions is an attempt to overcome the 
limitations of physical-law-based building-block approach as mentioned by Chen et al. (2013). The 
approach looks similar to graph grammar-based approaches, but it is far more constrained than graph-
grammar approaches since it allows only one loop in a path, and all rules used are of physical relations; 
whereas, graph grammar rules may be defined for any physical or abstract state. In graph grammar each 
node represents a unique concept, whereas, a concept is mapped to a path in the proposed approach. The 
aim is to support designers of sensors to explore a large concept-space, thereby increasing their chances 
of developing solutions of greater novelty and utility.  

In the following sections, we first present a representation for sensors, followed by models used 
to capture the representation in the form of building blocks; this is followed by a database of building 
blocks and the formation of a graph representing a super-set of concept-spaces for a number of sensors. 
The synthesis algorithm is presented next, followed by the validation and discussion. Finally, we 
conclude by summarizing the findings and the insights gained. 

2. Representation 

Sensor is a system which senses a quantity of interest without significantly disturbing it, and expresses 
the properties of the quantity sensed in terms of the properties of another quantity. We represent sensor 
using an input-output model. The property of the input quantity, which is of our interest, is measured in 
terms of the property of interest belonging to the output quantity. A sensor might have multiple inputs and 
outputs. For sensing, one of the inputs would be of the quantity to be sensed. During the process of 
sensing, all other inputs are assumed to be constant. If the other input quantities also change due to the 
change of the sensed input quantity, we get a feedback sensor. There can be more than one output 
quantity. We can choose a suitable output quantity. If we do not get the desired output quantity, we might 
try to cascade more than one sensor with different inputs and outputs to transform the output quantity to 
the desired one.  

In the next section, we shall discuss about the model used to capture this representation of a 
sensor and use that to form building blocks for synthesis. 
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3. Model for building blocks 

SAPPhIRE-lite, the model used for building blocks, has introduced four modifications to SAPPhIRE 
model: (a) the model is enhanced to focus on those areas that are relevant for computational sensor 
synthesis; (b) to capture complex scenarios, it concatenates multiple SAPPhIRE models; (c) it uses 
measurable quantities that undergo change in these scenarios; and (d) it makes a distinction between 
logical and quantitative attributes. The difference between the two models is explained in Appendix-C 

The model is explained by using the example in Table 1. Here the input and output quantities 
are presented and their corresponding magnitudes are represented by using algebraic symbols (see lines 3-
10). The output quantities are related to the input quantities by a relation (see line 1) that is 
mathematically expressed as an equation (see line 11). The condition for the activation of the relation is 
captured by using a set of predicates. The predicates are presented in lines 15-17. The condition here 
states that a solenoid is required for the relation to be active. Here solenoid is a conceptual structure (see 
line 14) that can be realized by using real components like a coil and air (see line 19).  The state describes 
the observed changes of the parameters of the system (see line 20). The phenomenon is the interaction 
between the system and its surroundings. Here magnetic field and electrical current is exchanged between 
them (see lines 21-22). The overall intent would be to produce a magnetic field. This interpretation of the 
observable state change is captured as action (see line 23). 

 

Table 1 A textual representation of a SAPPhIRE-lite instance 

01 Relation: Ampere's Law 
02 -------------------------- 
03 Inputs Quantities: 
04   Length of solenoid (L) 
05   Number of turns of solenoid (N) 
06   Electric current (i) 
07   Permeability (mu) 
08  
09 Output Quantities: 
10   Magnetic Flux density (B)   
11      Equation: B - iN/L * mu = 0  
12  
13 Condition: 
14   Conceptual structure : Solenoid 
15   Predicates:  
16     Has Finite Electrical conductance = true 
17     Has Air as Dielectric = true 
18  
19 Components: Coil, Air 
20 States: No Magnetic Field present --> Magnetic Field present 
21 Phenomenon:  
22   Magnetic Field, Electrical Current 
23 Action: Electrical Current produces magnetic field 

 

 

4. Database 

To aid in the synthesis process, we developed a database of building blocks. Known physical laws are 
modelled and populated in the database. The database consists of two portions: a persistent database and 
a run-time database. The persistent database is compact and is ideal for storage and transportation. It is 
used as a template to build the run-time database.  

4.1. Persistent Database 

The persistent database contains a set of models of known physical relations decomposed into sets of 
quantities, conditions, conditional attributes and relations. It captures information in textual form. For 
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synthesis, we do not need all the entities of the model. So the persistent database is populated with a 
subset of these entities. In Fig. 3, we see a visual representation of the information stored in the persistent 
database. A relation contains reference to the input and output quantities. Each input and output quantity 
has an associated symbol for representing them in the mathematical equation for the relation. The 
equation is represented using the eqn key and is associated with the output quantity; there could be 
multiple outputs for a relation.  Each relation has a cost attribute associated with it; it also has an 
associated condition.  

  
 

 

Fig. 3 Visualization of the data structures in the persistent database 

A quantity may have an inheritance hierarchy; the attribute isA is used for this purpose.  A 
quantity may also have multiple names; all of them are expressed as quantities and grouped together 
using the aliasGrp attribute. In the figure, we have shown the details for a single quantity; all quantities 
have similar structures. The quantities in the database are currently from multiple domains: mechanical 
(solid and fluid), electrical, magnetic, thermal, optical, chemical, radiation, acoustic, nuclear and general. 
For sensors domains play an important role and minimizing inter-domain transitions is recommended.  

Condition is captured as a set of predicates using the property attribute; the name of the 
condition is used to describe a conceptual structure; conditions may exhibit inheritance hierarchy using 
the isA attribute. The persistence database uses textual representation to store this information. There are 
some more attributes to describe the quantity and its properties.  

Cost is an implementation-specific attribute. The cost attribute of a relation is a way to rank 
concepts (see section 5.3). Optimizing the overall cost is a design goal. In order to facilitate that, 
typically, each relation has unity cost associated with it. To capture inheritance hierarchy among 
quantities, and to represent quantities with multiple synonyms, cost with value of zero is used, since these 
relations are reinterpretation of the same quantity (e.g. displacement resulting in a change of position).  

 

4.2. Run-time Database 

The model maps the output quantities to the input quantities with the help of some relations. Since both 
inputs and outputs are quantities, and a relation acts as a mapping function, we can see that there are two 
distinct sets here: a set is of quantities (����) and a set of relations (����). A relation that belongs to 
���� , maps one or more input quantities to one or more output quantities.  Also, a quantity may act as 
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input for some relations and it can also act as output for some other relations. Hence, we see that between 
any two quantities of ���� there is no direct association; all associations are through an intermediate 
relation which belongs to ����. Similarly, there is no direct association between two relations belonging 
to ����, all associations involve an intermediate quantity that belongs to ����. In graph-theory parlance, 
���� and ����  form a bi-partite graph if we use edges to represent the associations (see Fig. 4). The 
run-time database implements the bi-partite graph using data structures of the underlying computing 
language.  

In the following sections, we shall explain how the model and the run-time database fits into a 
real system. We also interpret the meaning of the run-time database. The synthesis algorithm will also be 
introduced gradually over the next couple of sections. 

 

Fig. 4 Understanding the formation of the bi-partite graph in the database 

4.3. Systemic view 

A system is viewed as a hierarchical tree of components. Some component nodes of the tree are at the leaf 
level and others are not. A non-leaf node component has an associated sub-tree of components. We can 
see that at each of the non-leaf nodes of the tree, there exists some form of a relation that binds a child 
component node to its parent component node. Such type of relations can be expressed in the model. 
Hence, each component has in it some of the entities of the model. A closer look reveals that each node 
can have one or more models with entities like quantities from a node associated with entities like 
relations in another node. Thus it can be concluded that each component node has a subset of the run-time 
database object that we have introduced before.  

A relation can have inputs that come from the components located at the same or different level 
with respect to itself; i.e., for a relation located at level n, the inputs can come from level k, where k can 
be n, less than n, or more than n. A vector quantity can flow across component boundaries. As such, for a 
relation that has input quantities that are vectors, there can be multiple variants of the relation to take care 
of the different combinations of the inputs coming from components of different levels. So, here we are 
introducing the need to have multiple variants of a relation in the run-time database. 

4.4. Min-system 

We have seen that in each component of the component tree, a subset of the run-time database exists. In 
this section we shall see how to build the run-time database for a system under design.  

For synthesizing a system, the proposed synthesis algorithm starts with an initial size of the 
component tree. A system needs a minimum of three entities: surrounding, interconnection layer and a 
component; i.e. a component tree of three levels. We call this component tree of the system as the min-
system. For building bigger systems, taller component trees may also be used. For the synthesis 
algorithm, the height of the component tree is a configurable parameter.  

To build the run-time database, we populate all components of the min-system with the entities 
from the persistent database using directed edges to represent the direction of causal flow. This creates a 
bi-partite directed graph within the min-system. The generated graph is the desired run-time database for 
this min-system. While populating the relations in a component of the min-system, one has to see that the 
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relation is compatible to that particular component as far as its required input and output quantities are 
concerned.  

4.5. Super-set of Concept-spaces 

Let us see what is the physical interpretation of the graph represented by the run-time database. The graph 
that is constructed inside the run-time database links all possible physical relations using directed edges. 
If we take a path that connects two quantities, we can see that the path has alternate nodes which are 
quantities and relations because of the bi-partite nature of the graph. So a path, in fact, signifies a set of 
transduction rules that would transform one quantity into another. This is, in fact, a conceptual design of a 
sensor. If we include all the possible paths between two quantities (say �� and ��), we shall get all 
possible concepts to sense the quantity �� in terms of �� . So the graph captures all possible concepts of a 
sensor, subject to the size of the database. Thus, the concept-space of a sensor is a sub-graph of this bi-
partite graph. Since this graph can be used to synthesize many types of sensors, it is a super-set of many 
concept-spaces belonging to many sensors. We constructed this graph in linear time, i.e., it has time 
complexity of 
(�).  

 If we try to position this idea with respect to other concept exploration techniques, e.g. 
functional composition or graph grammar, we see that all other techniques have difficulty in exploring the 
concepts because of the presence of loops. They, generally, end up with a loop and hence the number of 
concepts are infinite and the same set of functional blocks or grammar rules are repeated indefinite times. 
In the later section, we shall use this global view to add constraints into our search algorithm and find 
concepts without running to infinity. Our approach has decoupled concept-space building activity from 
that of concept finding. Now to generate concepts, one has to look into the concept-space and select 
solutions instead of finding solutions.  So, the goal of the synthesis algorithm is to find paths in this bi-
partite graph that connects the input quantity to some desired quantity following a predefined topology. 

In the next section, we will propose a synthesis algorithm that selects concepts from the bi-
partite graph. 

5. Concept generation 

We have developed a tool (see Section-7), which can be used to generate two types of sensor concepts. 
For the first type, the user specifies both the input and the output quantities; the designs generated, 
referred to as direct sensing designs (Sarkar et al. 2015a), convert the input to the output. In the second 
type, the user only specifies the input quantity, and feedback is used to nullify the change caused by the 
input quantity that is being sensed; these are referred to as feedback sensing designs (Sarkar et al. 2015b). 
The focus of this paper is on supporting synthesis of  feedback sensing concepts. 

5.1. Feedback sensing designs 

As mentioned in Section-1, all feedback sensors must have loops. In this type of designs, the user 
specifies the input quantity, and the algorithm searches through the min-system for all paths that lead to a 
feedback loop. It should be a negative feedback to make this solution practically useful. If the quantity 
that is fed back is a vector, the designer can easily create a configuration with negative feedback by 
reversing the direction; for scalar quantities, qualitative or quantitative analysis needs to be done to see if 
negative feedback would be possible. The structure of feedback sensing is shown in Fig. 5; the relations 
are represented using squares and quantities by ovals. The sensed quantity is of type Q0 and has a 
magnitude V. After a series of transductions, the sensed quantity gets converted into type Q1 and of 
magnitude V0. The magnitude of quantity Q1 can be related to Q0 using the relation g(V). The feedback 
magnitude is V1 and the resulting quantity is of magnitude V2. The feedback logic uses a series of 
transductions to generate the feedback quantity and is expressed by the relation f(V2). If the input quantity 
Q0 does not change during the time of the measurement, the feedback quantity might be able to catch up 
with the magnitude V0 and nullify V2. At steady state, V2 is null and	�1 = 	−�0. The quantity Q2 is 
controlled by feedback to indirectly track the input quantity Q0. So V3 i.e. the magnitude of Q2, can be 
used to measure Q0. 
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Fig. 5 Structure of a feedback sensor 

5.2. Loop detection algorithm 

In this section we describe the loop detection algorithm for feedback sensor synthesis. As discussed in  
Section-5.1, feedback sensors must have loops; loop detection is a critical part of this algorithm. 
Generally, depth-first search is the ideal algorithm for detecting loops exhaustively in a directed graph. In 
case of depth-first search, the child nodes are explored ahead of the peer nodes, and loops are detected by 
colouring the nodes traversed from the root, i.e. the start node, to the destination node. In such problems 
time is typically not a constraint since exhaustiveness is sought. However, loop detection problem in 
feedback sensor synthesis is different. Since the tool, of which synthesis is a part, is meant to be 
interactive for users to explore a variety of solutions as these get produced automatically by the synthesis 
algorithm, it is time, rather than exhaustiveness, that is the main constraint. So the synthesis algorithm 
should provide a relatively small number of concepts of high variety that can be explored in reasonable 
time by the user. Depth-first search is not practically feasible under such constraints when the graph is 
even moderately big. What is needed is a form of search that helps in discovering loops by exploring all 
alternative paths while also keeping the depth of the search to the minimum.  

We used a variant of breadth-first-search algorithm called breadth-first-search-loop-finder 
which preserves the path information from the root node and helps in detecting loops. Thus, we imported 
the loop detection mechanism from depth-first-search into breadth-first-search. Breadth-first search is 
not the ideal algorithm for finding loops because of the space overheads. But we shall see in the 
subsequent sections that under added constraints of variety, path length and time, breadth-first-search-
loop-finder algorithm performs better than depth-first search. 

Table 2 shows the pseudo-code for the breadth-first-search-loop-finder algorithm. The 
algorithm uses a queue (see line 4) to explore all peer nodes ahead of exploring the children nodes. The 
path information corresponding to each node is saved in array attributes associated to the node but located 
in the queue (see lines 9-22). The algorithm scans all the edges and as such, may scan a node multiple 
times. So preserving path information outside the node is useful. The path information is propagated from 
the parent node to the child node when the child node is explored (see lines 36-47). In order to find loops, 
the nodes located in the path from the root is checked (see line 34). When a loop is found, the path 
information is returned (see line 52). The number of desired paths is also taken into account to stop the 
algorithm (see line 27 and line 50). 

Table 2 Pseudo-code for breadth-first-search-loop-finder 

01 // bfs with support for loop detection  
02 function bfsLoopFinder (Graph, maxLoops) { 
03     // Take a queue data structure  
04     var a = Queue() 
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05     // extract the root of the graph  
06     var m = Graph.root 
07     // initialize an array for storing the edges from   
08     // the root to the node  
09     var pathEdges = [] 
10     // initialize an array for storing the nodes from   
11     // the root to the node  
12     var pathNodes = [] 
13     // add the root node to the path of nodes  
14     pathNodes.push(m) 
15     // nodes information  
16     var nodeInfo = { 
17         'node': m,  
18         'pathNodes': pathNodes,  
19         'pathNodes' : pathNodes 
20     } 
21     // add the node information to the queue  
22     a.enqueue(nodeInfo) 
23     // list of paths to be returned  
24     loopPathEdges = [] 
25     while(s = a.dequeue()) { 
26         // loop as long as there is some node in the queue  
27         if (maxLoops > 0){ 
28             // restrict the number of loops what we are to find  
29             for each out bound edge e from s.nod e { 
30                 // destination node for edge e  
31                 var n = e.destination 
32                 // we need to find loops. Check that the node   
33                 // doesn't occur in the path  
34                 if (s.pathNodes.indexOf(n) == -1 ) { 
35                     // preserve the path information   
36                     var pathEdges = s.pathEdges 
37                     pathEdges.push(e) 
38                     var pathNodes = s.pathNodes 
39                     pathNodes.push(n) 
40                     // nodes information  
41                     var nodeInfo = { 
42                         'node': m,  
43                         'pathNodes': pathNodes,  
44                         'pathNodes' : pathNodes 
45                     } 
46                     // preserve the node information in the queue  
47                     a.enqueue(nodeInfo) 
48                 } else { 
49                     // we have a loop  
50                     maxLoops = maxLoops - 1 
51                     // return the path information  
52                     loopPathEdges.push(n.pathEdg es) 
53                 } 
54             } 
55         } else { 
56             break 
57         } 
58     } 
59     return loopPathEdges 
60 } 
 

 
The algorithm loops for all outgoing edges; its worst case complexity is dependent upon the type 

of graph and also on the number of solutions required. For a simple tree, the complexity is linear to the 
number of edges 
(|�|). But for arbitrary graphs, it has space complexity of 
(��) and time complexity 
of 
(��), which makes it worse than depth-first-search that has linear space complexity 
(�)  and time 
complexity of 
(��). But for practical graphs, the complexity can be curtailed by limiting the number of 
concepts required. We shall see in the later sections that on average, breadth-first-search-loop-finder will 
produce shorter path based concepts much ahead of depth-first-search; thus the breadth-first-search-loop-
finder algorithm will turn out to be much better for practical applications. 

In the following sections, we will see some of the post processing activities associated with the 
set of concepts produced. 

5.3. Ranking 

Each generated concept is ranked with respect to the overall cost associated to its path in the bipartite 
graph. Each node in the graph has a cost attribute. Nodes which capture mapping between two quantities 
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which are synonyms have a cost of zero; rest of them have a cost of one. The overall cost signifies the 
number of times energy transformation occurs and as each transformation is associated with some energy 
loss and some degradation of the signal, minimizing the overall cost is a design goal.  So shorter paths are 
generally preferred. This technique gives a simple estimate about the quality of the concept produced 
without going deep into any quantitative analysis.  

Once we filter concepts based on the path cost, we pass them through further filters that try to 
capture some of the rationale used by humans to develop a good concept. The next section discusses these 
filters. 

6. Filtering of concepts 

We assume a concept is uninteresting when one of the following occurs: (a) if there is repetition of 
relations or quantities in the solution principle; and (b) if there are too many domain transitions. Both the 
cases lead to inefficient designs, and therefore, are assumed to be uninteresting solutions. Limiting the 
number of uninteresting solution principles is a challenge for the synthesis approach.  

We use filters based on heuristics to discard uninteresting solutions. We have adopted filters to 
avoid (a) duplicate relation, (b) duplicate quantity and (c) domain loop. Here, the scope of a relation is 
expanded by using a combined set of input and output quantities. With this approach, relations that are 
similar to one another but not exactly matching are also avoided. Also, by filtering out solution principles 
with duplicate quantities, long solution principles which might have unwanted loops can be avoided. 
Apart from these filters, the approach can support user-interactive filtering of concepts based on relations 
as additional constraints. 

Often a feedback path involves some electronics to actively control the fed back signal and to 
interpret the measured quantity in terms of the sensed quantity. To facilitate this, there is an additional 
filter to select only solutions that have electrical voltage (electric-potential-diff) as a quantity in the 
feedback loop. 

In the next section, we discuss a software implementation of the algorithm as a tool for 
supporting automated synthesis of feedback sensor concepts. The algorithm’s complexity analysis is 
available in Appendix-E. 

7. Software tool - SyCd 

An interactive web-based tool, named as SyCd (Synthesis of Conceptual designs) (Sarkar 2015), has been 
developed using the algorithms described earlier in this paper. It has a pictorial representation of the 
graph that shows a sensor concept in terms of the phenomena used in the transduction of its inputs to its 
outputs. The database currently has 169 relations and 127 quantities, which together captures 10 domains. 
The tool uses these technologies: HTML5, CSS, SVG, Javascript libraries (AngularJS, d3 and jQuery), 
MongoDb and web sockets. It has a server that stores the database of building blocks.  

To generate a feedback sensor concept by using the tool, the user has to first enter the input 
quantity that is to be sensed. The tool then displays a number of possible concepts for the user to choose 
from. For easy comprehension, the search results are presented to the user after grouping them under 
three categories: domain view, relation view and conceptual-structure view. Each view divides the 
complete set of solutions into disjoint sub-sets. Domain-view is of importance for sensors. A solution 
principle might span across multiple domains. Decision making is easy when solutions are classified 
based on the number of domains. In relation-view, the solutions are grouped according to the order of the 
relations in the solution principle. This is useful when comparing a group of solution principles with an 
existing sensor concept. The conceptual-structure-view groups solution principles with respect to the set 
of conceptual structures that they use. This helps a designer to choose concepts based on conceptual 
structures. The user can also use relation-based filters for viewing only a specific type of concepts. The 
user can short list a handful of interesting concepts and then go to the analysis phase. In the analysis 
phase the user can investigate each concept and carry on detailed study of each concept with respect to 
other criteria. We shall not discuss about the analysis phase here as it is beyond the scope of the paper.   

The process of populating the database has some difficulties. The database needs relations to 
capture the multiple views of the system. For example, to capture Coulomb’s law of electrical force 
between charged bodies in each of its possible causal forms, one has to view the force from either of the 
charged-bodies. The other charged body may be assumed to be in the surroundings or embedded as a 
child component. So there has to be two instances of the law in the database so as to capture these two 
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viewpoints. This is similar to the concept of knowledge twisting as mentioned in (Zavbi 2003; Zavbi and 
Rihtarsic 2010). 

The next section presents a validation of the approach with respect to the quality of concepts 
produced. 

8. Validation 

Validation focuses on the evaluation of the quality of the solutions generated by the tool, based on four 
criteria: (a) comprehensiveness of the solutions produced along with quality, (b) practicality of the 
concepts generated, (c) novelty of the concepts, and (d) the time required to generate a set of concepts. 
The following sections provide details about the validation process.  

To meet the comprehensiveness criteria, we need to see that the number of generated concepts 
are many, even after the un-interesting concepts are removed. For this, we can take the example of an 
accelerometer. The tool generated 35 concepts for accelerometer out of which patents were found based 
on 2 concepts. So, there are 33 concepts for which no patents were found. We argue that these 33 
concepts should act as stimuli for the designer to develop sensors which will be new and interesting, thus 
enhancing the designer’s creativity. Given the fact that 2 concepts of accelerometer were available as 
patents, we argue that this is a potential evidence that the concepts generated are practically relevant. We 
further argue that the remaining 33 concepts have potential to produce novel concepts of sensors as we 
could not see any existing patents for the same. In Section 8.1, we will see some of the concepts 
generated by the tool. In Appendix-C, we have an example to explain the process of comparing a patent 
with the generated concepts. 

To validate that the set of concepts generated are fast enough to help the designer during the 
design process, we can see the performance of the algorithm in comparison with that of existing standard 
algorithms and see the superiority in the proposed approach. Section 8.2 details the results of such a 
comparison.   

8.1. Results 

In Fig. 6, concept of an accelerometer synthesized using this algorithm is shown. Acceleration is sensed 
by a mass that converts it to a body force. The force exerted causes stress, leading to strain. The strain is 
sensed by a strain gauge which uses an interferometer, thus causing some phase shift to a light wave. An 
optical detector is used to sense the standing waves that are produced due to the phase shift and gives an 
electric potential difference as output. The electric potential difference drives a phase shifter to nullify the 
interference patterns, thus creating a feedback. Here, the input acceleration can be measured in terms of 
the electrical potential difference. To drive the phase shifter, the electrical potential needs to be amplified; 
thus external electronic circuit is necessary to sustain the feedback loop. We found that US patent 
US4900918A has implemented this concept. 
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Fig. 6 Synthesised feedback sensor concept of an accelerometer that is similar to patent US4900918A 
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Fig. 7 Synthesised feedback sensor concept of an accelerometer that is similar to patent US6575029 

Another example of an accelerometer concept that uses feedback is shown in Fig. 7. Here, the 
body experiences acceleration and exerts the resulting force on a spring, causing displacement. The 
displacement alters the value of position, in terms of a change of capacitance, in a position sensor that 
uses a capacitor. The changed capacitance produces an electric signal (electric-potential-diff) for an 
external feedback circuit to process. The external feedback circuit produces a feedback signal to nullify 
the force on the body by using Lorentz’s force. We found that US patent US6757029 has implemented 
this concept.  

In Fig. 8, the synthesised concept corresponding to the force-balanced accelerometer in Fig. 1 is 
presented. Here, the sensing path, from force to electric-potential-diff corresponds to the capacitive 
sensing comb and the path from electric-potential-diff to force corresponds to the capacitive feedback 
comb. The electronic control logic will be located at the electric-potential-diff node. 

The synthesis tool produced 35 concepts for this accelerometer function. Patent search revealed 
existence of patents corresponding to 2 concepts. 
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Fig. 8 Synthesised feedback sensor concept of an accelerometer with electronic feedback control 

 

Fig. 9 Synthesised feedback sensor concept of a soil moisture sensor with electronic feedback control 

In Fig. 9, a synthesized concept for a soil-moisture sensor is presented. The presence of moisture 
in soil alters its electrical conductivity, thus changing its electrical resistance. The change in the electrical 
resistance is sensed by passing a constant electrical current to produce an electrical potential signal; the 
electrical signal is passed to external feedback control circuit; the output of the feedback controller drives 
a capacitor by altering its electric charge, thus causing displacement to an attached gold-leaf electroscope; 
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the displacement of the leaves of the electroscope changes the resistance of the potentiometer (i.e. a 
variable resistor) which is formed by the position of the probes in the soil under test, thus nullifying the 
change in the electrical resistance of the soil. No closed-loop soil-moisture sensors designs have been 
reported yet in the literature (Jorapur et al. 2015) for us to compare with. 

 

 

Fig. 10 Synthesised feedback sensor concept of a temperature sensor with electronic feedback control 

In Fig. 10, a synthesised concept of a temperature sensor is presented. In this example, 
temperature alters the resistance of a resistor which is made with piezo-resistive material.  The altered 
resistance is sensed by passing a constant electric current and the generated electrical potential signal is 
sent to an external feedback control circuit. The output of the feedback controller is used to drive a 
capacitive force generator to exert force on the piezo-resistor to alter its resistance, thus nullifying its 
effect. The existence of such a material is substantiated in (Tung Thanh Bui et al. 2009). 

In the next section, we study the performance of the algorithm and the quality of the concepts 
produced. 

8.2. Performance studies 

We have measured the performance of the algorithm under various conditions to obtain insight into its 
usability and superiority. 

In Fig. 11 we have investigated the dependence of the execution time and iteration on the 
number of concepts desired. The trend shows exponential in iterations and time with respect to the 
number of solutions. Since the software is run on a browser, the execution time is also dependent on 
external factors, like the system load; it is not possible to obtain memory usage information because of 
extensive use of application level cache, etc. 

The performance of the breadth-first-search-loop-finder algorithm is compared with depth-first 
search to demonstrate its superiority under the application of the constraints. In Fig. 12, a comparison is 
made between depth-first-search and breadth-first-search-loop-finder algorithms in terms of the average 
length of solutions produced. As can be seen, when a given number of solutions are desired, the breadth-
first-search-loop-finder algorithm performs better than depth-first-search; it produces much shorter 
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solutions. It is not possible to generate and compare with the same set of solutions as depth-first-search 
needs to first generate all solutions and then sort out the solutions meeting the selection criteria.  

In Fig. 13, the time difference for execution of breadth-first-search-loop-finder with depth-first-
search is plotted for different number of solutions. No particular trend was observed but breadth-first-
search-loop-finder takes more time for generating the same number of solutions. 

 

Fig. 11 Empirical study of the breadth-first-search-loop-finder algorithm 

 

Fig. 12 Comparison between depth-first-search and breadth-first-search-loop-finder with respect to the average length of the 

solutions 
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Fig. 13 Difference in time for same number of solutions 

9. Discussion 

In this section we discuss the results and their implications. 
The exponential growth in Fig. 11 is because of the number of failed search attempts, and this 

corroborates with the understanding of the algorithm. The exact trend is not predictable as it depends 
upon the distribution of the desired solutions in the concept-space. The comparative advantage of the 
breadth-first-search-loop-finder, as shown in Fig. 12, supports the expected behaviour of more variety 
with shorter solution length. For the same number of solutions, even though depth-first-search produces 
much longer solutions, it might run faster than breadth-first-search-loop-finder as seen in Fig. 13. 

The significance of the contribution is in the representation that makes it possible to generate 
feedback sensors in much the same way direct sensors are generated. Earlier work primarily employed the 
paradigm of constructing a sensor by concatenating building blocks one at a time, until it found the 
required output. Once the desired output is found, further construction would be seen as a wastage of 
effort and an inefficient approach, and therefore would not be encouraged. However, this is precisely 
what is required if a feedback sensor concept is to be generated: the same quantity must be produced at 
least twice in the path, where these two quantities must form a loop. What earlier work failed to see is the 
following. If individual sensors are seen as fragments of an underlying network of phenomena, the 
network would already contain the loops; therefore, the network would contain paths that represent direct 
sensor concepts, as well as paths that represent feedback sensor concepts. The representation used in this 
work, therefore, converts the synthesis problem into a graph traversal problem, where none of the sensor-
possibilities are prematurely eliminated.  

The other advantage that the representation brings is to make the synthesis process far more 
efficient. Since the network of phenomena is common across all possible sensors that can be constructed 
out of a given set of phenomena, the network needs to be constructed only once. The earlier, construction 
based paradigm would have to generate specific portions of the network over and over again, each time a 
new sensor had to be synthesized.   

Automated generation of feedback sensor concepts is also unique. We have demonstrated a way 
to automatically synthesize feedback sensors. We have shown that the algorithm takes less time to 
generate quality solutions. The solutions generated were comprehensive enough to potentially enhance a 
designer’s creativity. This allows the designer to explore a large concept-space in a short time. The fast 
exploration was possible because of the breadth-first-loop-finder algorithm. Since we have applied the 
approach for feedback sensors, and feedback sensors comprise a significant part of the sensor space (Ko 
1996), this has the potential to extend the capability of the designer substantially. 

The approach has a few limitations. Capturing existing relations with the building blocks is often 
a challenging task. Improperly captured relations give rise to solution principles that are difficult to 
visualize; so modifications are often required. The designer has to take care of the fact that only 
functional relations are currently captured by the model. For example, in case of a vibrating MEMS 
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gyroscope, the vibrating body is intended to keep track of the inertial reference frame. But such 
interpretations cannot be represented by any input-output function. So such things cannot be easily 
modelled. But the angular shift in the orientation of the gyroscope with respect to the vibrating reference 
frame can be measured and hence can be captured as a function and thus can be modelled. Similarly, the 
effect of drag on the vibrating structure of the gyroscope can be modelled. 

Even though the proposed model has a set of conditional predicates to deal with problems of 
incompatibility, the current software did not use them. There is no predicate processing mechanism in the 
current version of the software and as such, automatic avoidance of uninteresting solution principles is 
sometimes not possible. Often some of the relations are a function of scale, e.g. Van-der-Waals’ force is 
effective when the distance is less than 10 nm. Such information is available in the conditional predicate 
and is not currently processed by the software. Improved implementation is required to alleviate the 
above limitations so as to explore the full potential of the model; this would be the focus of our future 
work. 

The conditions associated with a relation are best evaluated during the embodiment design 
phase, since the real magnitude and dimension of the quantity is decided at that phase. Before this stage, 
all predictions are based on possibilities and as such may or may not happen in reality. Designers would 
have to use their experience and design catalogues to guess suitable magnitudes of quantities that would 
be used in concept evaluation.  

It is to noted that this paper is primarily on exploration of concepts; therefore, the focus has been 
on functionality, and those phenomena that can be used to fulfil this functionality. However, efficacy of a 
sensor eventually lies not only in its phenomena but also on the way in which these phenomena are 
embodied, i.e. in the form and layout of the concept. The specific nature of the form and layout 
determines how well the phenomenon are embodied, and whether additional, unwanted phenomena, i.e. 
side-effects, can be adequately prevented. These aspects are currently out of scope of this paper.  In order 
to provide a more comprehensive support to the development of sensors beyond the conceptual stage, 
these aspects need to be addressed. 

The current software implementation did not explore the possibilities of predicting the 
characteristics of the components by using the set of predicates in the conditions associated with a model. 
Such an endeavour would also help in developing a proper component-level decomposition and thus aid 
in minimizing un-wanted effects. For a better description of the components, the geometric information 
can be captured by using qualitative techniques (Mukerjee and Joe 1990; Mukerjee 1991). Automated 
realization of components from a given prescription is a research problem. The class of problems that can 
be captured by the model is limited to those that have a functional relation between the inputs and the 
outputs. Thus, while selecting a problem to be solved by this technique, one has to think in terms of the 
effect caused by the change of one quantity on others. 

After the concepts are generated and presented to the designer, the designer many accept some 
of the concepts and proceed to the next step in the design process, like quantitative analysis with some 
standard components or move into the embodiment design phase. 

10. Summary 

The paper presents a novel approach for automated generation of concepts for feedback-based sensor 
designs. The algorithm to produce such concepts is discussed. The approach presents a unique way to 
generate a super-set of the concept-space ahead of identifying the individual concepts. The algorithm uses 
a database that is based on the SAPPhIRE-lite model of causality. The paper also provides details of a 
software tool that uses the algorithm to synthesize solution principles for sensors. The paper uses a 
modified breadth-first search algorithm for detecting feedback. It presented a number of examples of 
sensor design principles generated by the tool that have implementation in existing patents, as well as, a 
set of solutions for which no existing patents were found. The approach can be applied for the synthesis 
of concepts for systems that involves effect level functions.   
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12. Appendices 

Appendix-A. SAPPhIRE Model 

We shall summarize the SAPPhIRE (Chakrabarti et al. 2005)  model of causality in this section. The 
acronym SAPPhIRE stands for State-change, Action, Parts, Phenomenon, Inputs, oRgans and Effect, 
which are the seven constructs of the model. SAPPhIRE introduces these seven levels of abstraction to 
capture causality in physical systems. At the lowest level, it has parts which have organs (i.e. properties) 
that, along with external disturbances, serve as inputs to activate physical effects, thus causing some 
observable phenomenon in the form of an exchange of material and energy between the system and its 
surroundings, leading to changes to the state of the system. . The change of state may be interpreted as an 
action. The change of state many also act as an input into another SAPPhIRE model. Thus multiple 
SAPPhIRE models may be connected in chains to capture the functioning of more complex physical 
systems.  

Appendix-B. SAPPhIRE-lite Model 

In this section we shall summarize the SAPPhIRE-lite (Sarkar et al. 2015a) model of causality. 
SAPPhIRE-lite focuses mainly on the input, organ and effect layers of the SAPPhIRE model. It alters and 
generalizes them to describe complex scenarios by which sensors work, including those involving 
feedback. It has changed the nomenclature and scope of some of the entities of the SAPPhIRE model to 
support quantification and to capture feedback. It uses a variant of Signal Flow Graph called Switching 
Flow Graph (SFG) (Smedley and Cuk 1994) to quantitatively relate input quantities to output quantities 
under favourable input conditions. SFG is an input-output relation that is controlled by logic; only when 
the desired logical conditions are met, the output is produced as a function of the inputs. SFG is used to 
capture relationships among attributes without considering as to how the relationships are achieved or 
maintained.  

The block diagram of the SAPPhIRE-lite model, as shown in Fig. 14. It has retained 
SAPPhIRE’s levels of abstraction. It captures the state of the system over a span of time. It has explicitly 
depicted the states and presented them as an input-output system. The state of the system is described by 
a set of measurable quantities and conditions belonging to the underlying level of components. Physical 
phenomena are the underlying exchanges of material, energy or signal between the system and its 
surroundings that take place because of the activation of various physical effects. These exchanges in turn 
lead to state-changes. These state-changes are interpreted as actions. Physical effects get activated when 
favourable input conditions are met and required inputs are available. A system’s causal behaviour can be 
described using this model as a pictorial graph. Mathematical analysis of its state variables is also 
possible. The various elements of the model are summarized next using the example in Table 1.  

Quantity: Measurable material properties and physical attributes are represented as quantities; 
e.g. Input and Output quantities in Table 1(lines 3-10).  

Conceptual Structure: The underlying components (explained later) are abstracted using 
conceptual structures (Chakrabarti 2004; Rihtarsic et al. 2012). Conceptual structures have quantities. An 
example can be seen in Table 1 (line 14). 

Condition: A set of logical predicates forms a condition. Information about the context or the 
situation for a relation (explained later) to take place is described using conditions. A condition is named 
after a conceptual structure. For example, see in Table 1 (lines 16-17).  

State: The quantities and the conditions of the underlying components define the state of a 
system. It is an abstract entity. Because quantity is time-dependent, the state of a system is also time- 
dependent. An example of state change can be seen in Table 1 (line 20). 

Relation: The input quantities are mapped to the output quantities using a relation. Each output 
quantity can be mathematically related to the set of input quantities. This makes it possible for SFG to be 
used for modelling relations. A relation may have an associated condition for it to get activated. For 
example, the relation captures Ampere’s law and associates the input quantities to the outputs quantity 
using a mathematical relation (i.e., expressed using Latex (2015) notations) as mentioned in  Table 1 (line 
11).  

Component: Components are physical embodiment of the conceptual structure. Components 
may contain other components. For the example in Table 1 (line 19), a coil captures the functionality of a 
solenoid and air as a dielectric material. 

Action: The change of state exhibited by the system is interpreted as an action. In the example in 
Table 1 (line 23), one can interpret this state change as an action performed by the system to generate a 
magnetic field. It can be also interpreted as a way to change the magnetic field in a region. 
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Phenomenon: A phenomenon is an interpretation of the exchange of material, energy and signal 
between a system and its surroundings; e.g. see Table 1 (line 22). It is a result of physical effects that is 
taking place. Since SAPPhIRE-lite is based on signal flow and does not explicitly capture the flow of 
material or energy, it only indirectly captures phenomena. The exchange of material and energy is 
captured in the form of inputs or outputs. 

 

 

Fig. 14 Pictorial description of the SAPPhIRE-lite model 

Appendix-C. Difference between SAPPhIRE and SAPPhIRE-lite 

The difference between SAPPhIRE and SAPPhIRE-lite is shown in Table 3. SAPPhIRE-lite’s quantity is 
of numeric type. In SAPPhIRE model, input is of numeric type and organ can either be of numeric or 
boolean type. SAPPhIRE’s numeric entities, i.e., input and organ of numeric type, are mapped as quantity 
in SAPPhIRE-lite model. Boolean type of organ in SAPPhIRE is mapped as condition in SAPPhIRE-lite. 
A state in SAPPhIRE maps as a state of SAPPhIRE-lite. SAPPhIRE’s effect is generalized into a relation 
in SAPPhIRE-lite. The link between effect with its inputs and its organs is replaced with signals in case 
of SAPPhIRE-lite. Phenomenon is explicitly an exchange of quantity in SAPPhIRE-lite, whereas, it was 
implicitly defined as an exchange in SAPPhIRE. Parts in SAPPhIRE used to be the smallest physical 
entity; in SAPPhIRE-lite a component is used instead; components can be broken down into other smaller 
components. There is an explicit concept of output in SAPPhIRE-lite, whereas, output was implicit in 
SAPPhIRE. Abstraction of components in the form of a conceptual structure is unique to SAPPhIRE-lite. 
SAPPhIRE-lite is focused at formalizing SAPPhIRE model so as to take into account computational 
aspects for it to be used for sensor synthesis. 

SAPPhIRE had been used earlier for modelling relatively simple systems involving single phenomenon. 
SAPPhIRE-lite has been developed to model more complex systems that involve use of multiple 
phenomena. In the next section, we shall see how the SAPPhIRE-lite model can be used to create a 
database of building blocks to be used for synthesis of such systems. 

Table 3 Difference between SAPPhIRE and SAPPhIRE-lite 

SAPPhIRE SAPPhIRE-lite 

Input Numeric Numeric Quantity 

Organ Numeric Numeric 

Boolean Boolean Condition 

State Input Quantity State 
Organ Condition 

Effect Link Signal Relation 
State State 

Phenomena Exchange Exchange of Quantity Phenomena 

Parts  Recursive Components 
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  Condition name Conceptual Structure 

Output Implicit Explicit Output 

  
 

Appendix-D. Patent-based validation 

In this section we will discuss about the process of validating a generated concept such as the one in Fig. 
6 with that of an existing patent e.g. US 4900918 A. 

The patent US 4900918 A is titled: Resonant fiber optic accelerometer with noise reduction 
using closed loop feedback to vary path-length. 

The abstract says:  

A pair of resonant optical cavities are used to measure shifts in length of a beam which deflects 
under acceleration. One end of each optical cavity is highly reflective and the other end partially 
reflective, thus permitting resonating light to exit the resonators. The light outputs of the two resonators 
is combined and the resultant beat frequency is used to detect deflections of the beam. 

 
So we see a change in length is measured with optical resonators using beat frequencies. Inside 

the body of the patent description we see how the change in length happens. 
 
With the application of an acceleration, the beam becomes bent out of shape and the optical 

path-lengths become different, and thus there is a different resonant frequency associated with each. 
 
So the change in length is because of acceleration. The feedback part is described in the 

following text. 
 
The resonant accelerometer can also be used in the closed loop feedback mode. In this case, a 

phase shifter can be included in one of the waveguides. Instead of using an oscillating signal on the 
shifter, a dc signal will be used. The phase shifter can vary the optical path-length of one of the 
waveguides, and therefore can be used to equalize the two path-lengths which have been made unequal 
by the acceleration input. A unique voltage is required to vary the index in the phase shifter region so 
that no beat frequency appears at the output. A feedback loop may be constructed to achieve this 
condition, and the voltage to the shifter will be a measure of the acceleration. In the linear region of the 
shifter, the output voltage will be directly proportional to the optical path-length difference. 
 

Thus the idea matches to that of the concept that we have generated in Fig. 6. This is how we 
validated the concepts with that in existing patents. 

 

Appendix-E. Analysis of the synthesis algorithm 

The complexity analysis of the synthesis algorithm is presented here. 

Definition-1: The length of a solution with a feedback is the maximum length between the start node and 
the node with a feedback. 

Theorem-1: The algorithm breadth-first-search-loop-finder is exhaustive. 

Proof: The exhaustiveness of the algorithm is in comparison with the solutions generated by a depth-first-
search algorithm on the entire graph. The set of any k shortest solutions will have to be same for both the 
algorithms in order to satisfy the exhaustiveness criterion. 

Let us use contradiction to prove the theorem. Let us assume that there is a path j which is one of the best 
k-paths that connects the start node and ends up into a feedback loop and is not in the solution set of the 
breadth-first-search-loop-finder algorithm. To make this possible there has to be some edge, say e, and 
node say dst(e), in the path j that is ignored by the breadth-first-search-loop-finder algorithm. Assuming 
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that the graph has no duplicate edges, all edges and the associated destination node will be pushed into 
the queue. So, edge e and its destination node dst(e) is also in the queue; thus contradicting the initial 
assumption ■ 

Theorem-2: The algorithm breadth-first-search-loop-finder has a worst case time complexity of 
(��). 
Assume n to be the number of nodes in the graph. Also assume that the algorithm should find out all the 
possible solutions. 

Lemma-2.1: Maximum number of push into queue is 
(��). 

Proof:  The algorithm runs as long as there are some entries in the queue (line-25). For each of the 
outgoing edges a node gets pushed into the queue (line-47). Since there can be 
(��) edges, the 
maximum number of pushes will be 
(��). ■ 

Using Lemma-2.1, it is trivial to see that the over all time complexity is in the order of 
(��). ■ 

Theorem-3: The algorithm breadth-first-search-loop-finder has space complexity of 
(��). 
Proof:  According to the Lemma-2.1, the number entries that is pushed into the queue is 
(��). Each time 
when an entry gets pushed, an array of nodes that represents the path information from the root node also 
gets pushed. Since there are n-nodes, the size of a path is 
(�). So the memory requirement is 
(��).■ 
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