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Abstract  

In a factory representing the paradigm of Industry 4.0, location-aware functions are an important feature. To implement such a 
system, we need to track the assets in the factory continuously. The position of an asset should provide context for making decisions in 
the factory. In this study, we have proposed a technique for positioning metal parts in an indoor environment using a passive UHF 
(ultra-high frequency) RFID (Radio-frequency identification) system. We applied the fingerprinting method using RSSI (received 
signal strength indicator) values of the tags and measured Euclidean distances to estimate the position of the tag. The position was 
estimated with an accuracy of 89% in an area of 3.6 x 3.6 m. In this way, we can track metal parts in a factory with acceptable 
accuracy at lower costs than other indoor positioning techniques. 
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1. Introduction 

As factories are getting ready to join the fourth Industrial 
revolution, there is a strong wave of intelligent manufacturing 
systems supported by an abundance of sensors, the resultant 
explosion of data and availability of computing resources to 
utilize this data. A key feature of an intelligent manufacturing 
system is context-aware computing, and physical position is 
one of the major contextual attributes. For a machine to assist 
us intelligently, it must understand our real-world context [1]. 

A distinguishing feature of location-aware systems is that 
the information and/or interface presented to the user is a 
function of his/her physical location [2]. Apart from the user’s 
location, the interface can be a function of the location of 

some other assets, like raw materials, waste by-products, 
consumables, parts, hand tools and material handling systems. 
Continuous tracking of such assets can enable us to deliver 
location-aware services in industrial applications. Another 
benefit of automated asset tracking is high visibility of 
individual items, leading to real-time inventory management. 
Tracking of such assets is not new, but the technologies used 
for tracking are evolving. For many years, bar codes have 
been used to track inventory as it is an inexpensive and simple 
method. However, using bar codes requires manual 
intervention, which makes it error-prone and time consuming, 
particularly at a large scale. A better option is to implement an 
indoor positioning system.  
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An indoor positioning system (IPS) continuously 
determines the position of a person or an object in an indoor 
environment. It can be achieved by various ways, which have 
been compared in some surveys [3]–[6]. Al-Ammar et al. 
elaborated some performance metrics for indoor positioning 
systems, which can used as criteria for choosing the most 
suitable technology for the purpose [5]. For us, the task was to 
track metal parts around an assembly station at affordable 
cost. For that we chose an UHF (ultra-high frequency) passive 
RFID (Radio-frequency identification) system. Even within 
passive RFID, the choice of measured parameters depends on 
the hardware used. Some studies have used RSSI (received 
signal strength indicator), some have used Angle of Arrival, 
while some have used other parameters like phase difference 
and read count. In our case, we used RSSI for its reliability at 
low cost. We also tried to find a correlation between read 
count and distance, but our preliminary studies didn’t yield 
any conclusive relation. Passive RFID systems come with 
some drawbacks like attenuation, occurrence of energy null 
zones, tag and antenna collision, cross paths of signals and 
interference from other Radio-frequency devices [7]–[9]. 
However, there are ways to deal with some of these problems, 
and such systems have been used in many studies with 
reasonable success.  

Ting et al studied the feasibility of using passive RFID tags 
for indoor positioning [10]. Initially they studied the read rate 
of tag as function of distance from the antenna. Then they 
generated a look-up table against which they compared other 
datasets to estimate the location of the tag. Their experimental 
area was a square of 3m x 3m, which was divided into a grid 
of nine cells. They estimated the correct cell with 93% 
accuracy, but the cell size of 1m x 1m was too large for that 
area, which makes the results unimpressive. Bouchard et al 
presented a passive RFID localization technique using 
Trilateration from RSSI values [11]. In an experimental area 
of 6 m2 they could estimate the location with an error of 
14cm. Dao et al. presented a localization system using UHF 
RFID passive tags (Dao et al. 2014). On a table of 180cm x 
90cm they could estimate the location with an error of 32.3cm. 
From these studies, we realized the need for improving 
accuracy of positioning for larger areas at affordable cost.  

2. Methods 

For this study, we used RFID system from Zebra 
consisting of four antennas connected to one reader. The 
model of reader was FX7500 and the model of antennas was 
AN480. The tags, made by 3M, were designed to be attached 
to metal objects. The area was a square of 3.6m x 3.6m with 
antennas at each corner, but the tags were placed in a square 
of 2.4m x 2.4m concentric to that area. The antennas and tags 
were all held at a height of 1m from the floor. The antennas 
were labelled from A1 to A4 and were kept in cyclic order, 
with A4 at the origin [0,0] and A1 at [3.6,0]. All antennas face 
towards the centre of the square as shown in fig1. 

In this study, we have employed RSSI-based fingerprinting 
method. Initially, the object tag is placed in a particular 

direction at each of the 25 grid points starting from (0.6,0.6) 
and ending at (3.0,3.0). The RSSI values of the tag from each 
antenna are collected at each of these locations. This dataset is 
taken as the reference table, which can be seen as the RSSI 
fingerprint or radio-map of the area. The other datasets are 
compared with the reference table to estimate the location of 
the tag. For estimation, we applied the weighted kNN (k-
nearest neighbors) technique. 

3. Results 

The zone of influence of an antenna is roughly the shape of 
a lobe, but it cannot be calibrated for reference because of 
frequent variations in environment. Location fingerprinting 
with multiple antennas is a proven technique as shown in 
literature. Initially, we applied this technique with the tags 
facing the negative y direction. Out of two datasets collected 
on a particular day, one was taken as the fingerprint and the 
other was used to estimate the location of the tag. In this 
experiment, we estimated the location with an average error 
of 6cm, as shown in fig2. However, using datasets taken on 
other days, the average error went up to 25cm. 

The localization error for other directions based on radio-
map in one particular direction was very high. Therefore, we 
decided to take radio map in all four directions in the plane. 
Using these radio maps, we could estimate not only the 
location but also the orientation of the tag after taking data 
from different days. Thus, we could turn the challenge of 
varying orientation into an advantage. As per Table 1, 23 out 
of 25 estimates in the positive x direction were correct, which 
means 92% accuracy in this direction. For all four directions, 
the overall accuracy was 89%. 

Fig. 1. Top view of the experimental setup. Three zones are shown for one 
of the antennas as per their received signal strength. 
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During the experiments, there were certain positions where 
the one of the four antennas did not read the tag. This 
happened in about 5% of all readings, which we presume was 
due to the occurrence of null spots. In such cases, we moved 
the tag by 5cm in a direction favorable to the concerned 
antenna, without changing its orientation. 

4. Discussion 

Every tag performs differently. Although the difference is 
little, it is significant enough to show large errors in the 
estimated locations. Therefore, using the RSSI values of 
reference tags to interpolate the location of the object tag is 
not advisable. 

Since there is a logarithmic relationship between the 
distance of the tag from the antenna and the RSSI value 
received by the antenna, the accuracy of estimation decreases 
with the distance. It remains to be seen how accurate the 
estimations in a larger area are. 

Table 1: Readings in positive x direction from the dataset 

Actual 
X 

Actual 
Y 

Actual 
Dir N1 x N1 y Dir 1 N2 x N2 y Dir 2 N3 x N3 y Dir 3 N4 x N4 y Dir 4 

0.6 0.6 +X 0.6 0.6 +X 0.6 0.6 Y 2.4 0.6 -X 0.6 1.2 Y 

0.6 1.2 +X 0.6 1.2 +X 1.8 3 -Y 2.4 1.8 -X 1.2 3 Y 

0.6 1.8 +X 0.6 1.8 +X 1.8 3 -X 1.8 2.4 -X 0.6 1.2 +X 

0.6 2.4 +X 0.6 2.4 +X 0.6 3 Y 1.2 2.4 +X 0.6 2.4 Y 

0.6 3 +X 0.6 3 -Y 0.6 3 Y 0.6 3 -X 0.6 3 +X 

1.2 0.6 +X 1.2 0.6 +X 1.2 1.8 Y 0.6 2.4 -Y 2.4 0.6 -X 

1.2 1.2 +X 1.2 1.2 +X 1.2 1.8 +X 1.2 2.4 Y 0.6 2.4 -Y 

1.2 1.8 +X 1.2 1.8 +X 2.4 2.4 -X 1.8 2.4 +X 1.2 1.2 +X 

1.2 2.4 +X 1.2 2.4 +X 2.4 2.4 -X 1.2 1.8 +X 0.6 3 Y 

1.2 3 +X 1.2 3 +X 0.6 2.4 -X 1.8 3 -X 0.6 3 +X 

1.8 0.6 +X 1.8 0.6 +X 1.8 2.4 -Y 1.2 0.6 Y 1.8 1.2 Y 

1.8 1.2 +X 1.8 1.2 +X 1.8 2.4 +X 1.2 2.4 Y 1.2 1.8 +X 

1.8 1.8 +X 1.8 1.8 +X 1.2 1.8 +X 2.4 2.4 -X 1.2 2.4 Y 

1.8 2.4 +X 1.8 2.4 +X 2.4 1.8 +X 1.8 3 +X 2.4 2.4 -X 

1.8 3 +X 1.8 3 +X 2.4 1.8 +X 1.2 2.4 +X 2.4 3 -X 

2.4 0.6 +X 2.4 0.6 +X 1.8 1.8 Y 2.4 1.8 -Y 1.8 1.2 Y 

2.4 1.2 +X 2.4 1.2 +X 2.4 2.4 Y 1.8 2.4 Y 3 2.4 -Y 

2.4 1.8 +X 2.4 1.8 +X 1.8 2.4 +X 1.2 1.8 +X 2.4 2.4 -X 

2.4 2.4 +X 2.4 2.4 +X 3 2.4 +X 3 2.4 -X 1.8 3 Y 

2.4 3 +X 3 3 -X 2.4 3 +X 2.4 3 Y 3 1.8 +X 

3 0.6 +X 3 0.6 +X 3 1.2 Y 2.4 0.6 Y 2.4 3 -Y 

3 1.2 +X 3 1.2 +X 1.8 2.4 Y 2.4 1.8 Y 1.8 3 Y 

3 1.8 +X 3 1.8 +X 3 2.4 Y 3 3 -Y 2.4 3 Y 

3 2.4 +X 3 2.4 +X 3 3 -X 2.4 2.4 +X 3 1.8 +X 

3 3 +X 3 3 +X 3 3 Y 3 3 -X 2.4 3 +X 

Estimates   23   1   0   1 

 
 

 

Fig 2: Actual and estimated locations of the tag on the grid. 
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The experiments were conducted over a period of several 
weeks. For every experiment we had to set up the antennas 
and remove them after taking the readings. Although the 
antennas were placed in the same position and orientation, 
even slight variations in their placement affects the outcome. 
We believe that if the antennas and their orientation were 
fixed throughout all the experiments, we will get better and 
more reproducible results. 

5. Conclusion and future work 

Since we are also estimating the orientation of the tag apart 
from its location, it is more apt to call this positioning instead 
of localization. This was the first study involving positioning 
of metal parts in a manufacturing assembly facility. Another 
claim of this study is affordability compared to other 
technologies. As per the quotations we received, an Ultra-
Wide Band (UWB) system that claims to deliver similar 
accuracy over the same area costs about four times that of our 
Passive UHF RFID system. Moreover, the tags of an UWB 
system also cost much more than passive RFID tags, which 
leads to higher costs in scaling up. 

When applied as a context, the position of a tag can tell 
whether the part is properly oriented during the assembly 
process. The antennas will be installed around an experimental 
assembly station, which will be a part of a smart factory lab. 
In future, this approach may be extended to 3D space. We also 
need to speed up the switching between antennas to estimate 
the location in real-time (RTLS). The variation among tags is 
still a problem. Any radio-map will be valid for a particular 
tag, but in real scenarios we need to locate several different 
tags, whose characteristics are likely to be different. One way 
of dealing with this issue could be to reuse a fewer number of 
tags and benchmark them against each other. 

On the analytics side, we need to devise a technique to vary 
the radio-map as per the RSSI values of the reference tags 
through Machine Learning techniques. Ultimately, we have to 
integrate the localization system with a ‘Smart factory’ 

dashboard to implement context-aware decision-making in the 
factory. 
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