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Abstract

This article is an attempt to improve the efficiency of procedures for compositional synthesis of design solutions using
building blocks. These procedures have found use in a wide range of applications, and are one of the most substantial

outcomes of research into automated synthesis of design solutions. Due to their combinatorial nature, these procedures
are highly inefficient in solving problems, especially when the database of building blocks for synthesis or the problem
size is large. Previous literature often focuses on improving only the algorithm part of a procedure, although it is both
its algorithm and database which together determine the overall efficiency of the procedure. This article reports the

construction and analysis of an improved algorithm, based on bidirectional search, for efficient compositional synthe-
sis of design solutions using a set of building blocks.
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1. INTRODUCTION
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Computational systems for compositional synthesis, where
a set of building blocks is composed into networks as solu-
tions for design problems, have been found suitable for

various applications (Pahl & Beitz, 1984; Prabhu & Taylor,
1988; Hoover & Rinderle, 1989; Ulrich & Seering, 1989;
Finger & Rinderle, 1990; Hoeltzel & Chieng, 1990; Kota &
Chiou, 1992; Malmqvist, 1993; Chakrabarti & Bligh, 1994,
1996a, 1996b, ,1996c; Welch & Dixon, 1994; Sushkov et a!.,
1996). Each of these systems requires a database of build-
ing blocks. Building blocks are simpler, constituting ele-
ments of the solutions found in the domain of application.
For instance, Ulrich and Seering use bond graph terminol-
ogy (Paynter, 1961) to describe various conceptual build-
ing blocks (such as springs and gears) in the physical systems
domain, Hoover and Rinderle (1989) use various gear pairs,
Chakrabarti and Bligh (1994) use various motion elements,
and Kota and Chiou (1992) use matrices representing the
properties of kinematic pairs as building blocks. The algo-
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rithms are essentially combinatorial in nature, often with a
"generate and test" flavor.

The two parameters that synthesis procedure researchers
should be, and often have been, most concerned with are:
(1) the effectiveness of a synthesis procedure, and (2) its
efficiency. A synthesis procedure should be both effective
and efficient. Effectiveness is the ability to synthesize new
and interesting concepts; the issue of the effectiveness of a
compositional synthesis procedure has been discussed else-
where (Chakrabarti, 1998).

The importance of having a comprehensive database of
building blocks has long been recognized as essential for
generating new and interesting concepts, and work has been
going on in a number of groups towards developing com-
prehensive databases of building blocks for generating ideas
(Roth, 1970; Selutsky, 1987; Ishii et a!., 1994; Tsourikov,
1995; Taura et a!., 1996; Sushkov et aI., 1996; Chakrabarti

et aI., 1996; Khang, 1998). However, efficiency of a syn-
thesis procedure, which is defined here as the inverse of

computational effort (i.e., computation and/or memory) re-
quired for the procedure to generate a given solution set, is
particularly important for the procedure to be able to gen-
erate new and interesting concepts using a reasonable amount
of effort, especially when, to achieve this, it may have to



68

input -- outputdesign
problem

Fig. 1. The general form of design problems under consideration.

use very large databases. A procedure consists of two things:
an algorithm and a database of building blocks. Previous
efforts to improving efficiency have concentrated primarily
on the algorithm part. We wish to improve the efficiency of
both the algorithm and the database to bring about an over-
all improvement. This article concentrates on the efficiency
aspect of a compositional synthesis algorithm.

In some earlier articles, an algorithm was proposed for
exhaustive compositional synthesis of solution principles
(Chakrabarti, 1995; Kiriyama & Johnson, 1995; Chakra-
barti et aI., 1997). A comparison between the solutions gen-
erated by the program and those considered independently
by the designers (Burgess et aI., 1995) in a case study re-
ported by Chakrabarti (1996) showed that the computer
suggested a wider range of interesting principles than de-
signers considered on their own. This demonstrated that
solutions generated by such computational-synthesis proce-
dures could be helpful in expanding the designers' minds
into a wider range of new and interesting ideas than possi-
ble at present. However, when the database of building blocks
is large, the algorithm tended to be inefficient: it took a long
time to run, and the memory required was huge. This article
presents a new algorithm, based on bidirectional search,
which, given the same database of building blocks, gener-
ates the same set of solutions using much less computation
time and memory.

2. DESIGN PROBLEMS CONSIDERED

The design problems considered here are those which can
be expressed in terms of a function transforming a given
input into a required output. For instance, a sensing prob-
lem can be expressed in terms of an input signal to be
sensed (such as an acceleration in the case of an accelerom-
eter problem), and an output medium (Chakrabarti et a!.,
1997) in which this signal is to be sensed (such as an elec-
trical voltage). In the medical-device domain, a drug infu-
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sion problem could be expressed in terms of an input signal
producing the effect of a drug flow of some amount. In a
mechanical device domain, an example would be a door-
locking problem whereby a given input motion of the door
handle leads to a retraction motion of the latch. Although
not all design problems can be expressed in terms of inputs
and outputs (Umeda & Tomiyama, 1997), it is a represen-
tation which finds its use in a large variety of problems in
many domains of application. The common form for these
functions is shown in Figure I.

3. DESIGN SOLUTIONS CONSIDERED

A design solution (also referred to in this article as a solu-
tion principle) under the scope of this work is one that can
be expressed as a composition of building blocks such that
they are connected via their inputs and outputs to transform
the given input of the design problem into its required out-
put. Each building block, therefore, has an input and an
output, and the building blocks, constituting a solution prin-
ciple, transform the given input into a number of intermedi-
ate I/O variables before producing the required output. An
accelerometer solution principle, for instance, can be a com-
position of three building blocks, an inertia block to trans-
form the input acceleration into an inertia force, a spring
building block to transform this force into a change in po-
sition, and a capacitance block to alter the voltage across a
capacitor as a result of a change in capacitance due to the
position change. A building block, in the context of the
door-locking problem, could be a cam block transforming
the rotation of the handle into a translational motion and a

tie-rod block transferring this motion to a different output
position. These building blocks, as seen from the above two
examples, could be at different levels of abstraction, vary-
ing between abstract physical effects such as inertia, to con-
crete physical devices such as cams and tie-rods. A large
part of design solutions in existence, as well as a substantial
number of computer programs for design synthesis, are com-
positional in nature (e.g., Hoover & Rinderle, 1989; Ulrich
& Seering, 1989; Finger & Rinderle, 1990; Kota & Chiou,
1992). Therefore, this form of solutions (Fig. 2) is fairly
generic in its use in research as well as in applications.

4. THE SYNTHESIS ALGORITHMS

The original algorithm uses unidirectional search, whereas
the new algorithm uses bidirectional search.

B3 H B4 f=tp",

Fig. 2. The general form of the design solutions considered.
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4.1. Unidirectional search algorithm

Figure 3 is used to illustrate how this algorithm works.
Suppose the synthesis problem is defined as that of synthe-
sizing, using a database of 19 building blocks, all possible
solutions, each having three building blocks, for transform-
ing a given "input" into a required "output." The algorithm
proceeds by first finding all the building blocks that can
take the given "input" as its input (in the case in Fig. 3,
there are three such building blocks: BI, B2, and B3). For
each of these building blocks, its output is now taken as the
given "input," and search proceeds to find possible alterna-
tive building blocks that can take this new "input" as its
input. In the case in Figure 3, B I can be connected only to
B4, B2 to B5 or B6, and B3 to B7 or B8. By now, two of the
allowable number of three building blocks for forming a
solution have already been consumed, as the search has
proceeded through two steps. For each of the partial solu-
tions that are formed (such as Bl connected to B4), its
output is determined as that of its final building block (in
the case of BIconnected to B4, it is the output of B4), and
this is taken as the given input for searching for building
blocks in the next (and in this case, last) step. This pro-
duces, in the case in Figure 3, B9 and B 10 as possibilities
for connecting to B4, B 11 and B 12 for connecting to B5,
and so on, forming chains having three building blocks such
as BIconnected to B4 connected to B9. The output of each
such chain (which is given by the output of the last building
block in the chain, such as that of B9 in the case of the

chain containing B 1, B4, and B9), is now checked to see if
it is the same as the required output. The chains for which
this is the case are stored as possible solution alternatives to
the given problem (in the case in Fig. 3, these are B2-B5-
Bll, B2-B6-BI3, and B3-B8-B17), while the others are
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B 1...B 17: building blocks used to compose solutions

B2-B5-Bl1, B2-B6-BI3, B3-B8-B17:
solutions connecting given input to required output

Fig. 3. Unidirectional search process.
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discarded. The algorithm, therefore, consists of two steps:
(1) formation of chains of compatible building blocks of
specified size capable of accepting as input the given "in-
put," and (2) checking these for their capability of provid-
ing the required "output."

4.2. Bidirectional search algorithm

The concept of bidirectional search is not new. It has been
investigated in the past, for a number of search problems,
as a potential solution to computational problems associ-
ated with unidirectional search. Pohl (1971), and De Cham-
peaux and Sint (1977) used various heuristic versions of
bidirectional search for solving shortest-path and network-
flow problems, and Ishida (1996) used it for real-time search
of mazes and n-puzzles, with various degrees of success.
However, bidirectional search has never been used in ex-

haustive compositional design synthesis, where the prob-
lem is to find all possible paths of specified size between an
input state and an output state. In bidirectional search, search
proceeds from two directions. The central idea is that, in-
stead of generating complete chains of building blocks hav-
ing specified size before checking their capability of
providing the required output, two search processes, one
starting from the input and the other from the output, should
synthesize two sets of partial chains, one of which can take
as input the given input whereas the other can provide the
required output, and together have the same number of build-
ing blocks as allowed in a single solution. Each chain from
one set would then be checked against each from the other
to ensure that they can be connected together, that is, the
output from the chain that can accept the given "input" as
its input matches the input of the chain that can provide the
required "output."

Figure 4 illustrates one way in which a bidirectional al-
gorithm may operate, for the problems discussed in Sec-

<:::::> indicates where linking is possible
forward search

~ backward search

Fig. 4. Bidirectional search process.
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tion 2, using a given database. First, the allowable number

of steps for search (i.e., the allowable number of building
blocks in a single solution) is divided into the number of
steps for forward and backward search. In the case shown

in Figure 4, it was decided that forward search should gen-
erate partial chains having two building blocks, and back-
ward search should generate chains having a single building
block. The next step is to generate these partial chains in
the same way as in the case of unidirectional search above.

This process produces a set of fi ve forward chains (B 1-B4,
B2-B5, B2-B6, B3-B7, and B3-BS), all of which can accept
the given input, and a set of five backward chains (B IS,
B II, B 13, B 19, and B 17), all of which can provide the
required output. The next step is to check their compatibil-
ity, that is, matching the output of the forward chains with
the inputs of the backward chains. This should lead to con-

catenation of the compatible chains into complete chains
capable of taking the given "input" and providing the re-
quired "output." In the case in Figure 4, chains B2-B5,
B2-B6, and B3-BS are compatible, respectively, with B1I,
B13, and B17, forming complete chains B2-B5-BII, B2-
B6-B 13, and B3-BS-B 17. So, the algorithm has four main
steps: (1) determination of the allowable size of partial so-
lutions from forward and backward search, (2) synthesis of
forward partial chains as a result of forward search, (3)
synthesis of backward partial chains as a result of back-
ward search, and (4) concatenation of compatible forward
and backward chains into complete solution chains.

5. RESEARCH METHOD FOR COMPARISON

The research method would be to check to see if (1) the

same solution set is generated for the same problem using
the same database of building blocks by both the algo-
rithms, at various required solution sizes (i.e., the number
of building blocks allowed to compose a single solution);
(2) bidirectional search takes less memory and computation
time than unidirectional search for solving the same prob-
lem using the same database; and, (3) the computational
performance of bidirectional search gets increasingly better
than that of unidirectional search as the size of the database

and the required size of solutions are increased. These mea-
sures take different forms from those used by previous re-
searchers in bidirectional search (Pohl, 1971; De Champeaux
& Sint, 1977; Russell & Norvig, 1995; Ishida, 1996) due to
the difference in the nature of the problem investigated.
Among the applications investigated in the past, shortest-
path problems (Pohl, 1971; De Champeaux & Sint, 1977)
are the closest to the present research. However, the task in

these problems is to identify the shortest path of any size
(i.e., number of arcs in the path), rather than all possible
paths of a prespecified size as in the present problem. There-
fore, intersection (i.e., that the two search trees, forward

and backward, could grow into complete trees without any
guarantee of meeting each other) is a serious issue in these

problems. This has been addressed, and an improved algo-
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rithm developed to alleviate this, by De Champeau x and
Sint (1977), where the heuristic function ensures that inter-

section occurs, although only with a substantial increase in
computation. For these problems, Q(bd) (Russell & Nor-
vig, 1995), where b is the branching factor and d the depth
of tree searched (both to be defined in Section 6), provides
a reasonable measure for the bounds on space and time
required for computation. However, the present algorithm
is different in at least two ways: (I) it requires that all
possible paths between the given input and output are iden-
tified, and (2) that each path has the same, prespecified
size. These mean that (1) there is a substantial additional

computational requirement for concatenating the partial
paths, created in forward and backward search, into com-
plete paths from the input to the output node, (2) the check
for compatibility between forward and backward partial so-
lutions could be left until they are spawned to their prespec-
ified size, and (3) the problem of intersection is no longer
relevant, as one could guarantee intersection by indepen-
dently generating trees of prespecified sizes so that the sum
of their lengths equals the allowable solution size. It is,
therefore, possible here to provide closer estimates of com-
putational performance of these algorithms than is possible
to infer from estimates in the existing literature, for the
class of problems investigated. The following section pro-
vides these estimates.

6. ESTIMATION OF COMPUTATIONAL
PERFORMANCE OF THE ALGORITHMS

Two estimations are made. One is regarding the amount of
memory required, and the other in terms of the number of
computations required.

6.1. Comparison of memory required

A search could be seen as a process of spawning a tree, at
the beginning of which only the input node is known. At
each step of spawning the tree, a set of building blocks
from the database is selected and stacked, the input of each
of which is the same as that of the input node. At the next
step, the same is done for each building block in the stack,
where the output of the building block acts as the input to
be used for selecting another set of building blocks from
the database. The process continues until as many steps as
the number of building blocks allowed to be used in a so-
lution are performed. In the case of bidirectional search, a

process similar to the above is used twice, each with roughly
half the number of steps in the above case, and at the end,
the leaf nodes of one tree are compared to those of the other
so as to connect the matching branches to form solutions.

Let d be the number of building blocks to be used in one
solution, which we will call the depth of the tree spawned in
one-directional search. The branching factor, which is the
average number of building blocks selected at each step of
the spawning process, is denoted by b here. The maximum
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memory required to spawn a tree of depth d and having x
number of leaves is given by the product (b .x) of the num-
ber of leaves (i.e., branch ends) of the tree and the size of
each branch.

The memory required at the end of the first step is b.l,
since there are b branches, each of size I (as each is an
alternative building block matching the required input), to
be stored for connecting to other building blocks at the next
step. At the end of the second step, an average of b building
blocks could be connected to each of the branches in the

tree stored from the first step, requiring now the storage of
a list of size b.b (i.e., a tree having b.b branches), where
each element in the list (i.e., each branch of the tree) is of
size 2 (i.e., having two building blocks), requiring a total
memory of 2.b.b. At the end of the third step, similarly, the
memory required will have been increased to 3.b.b.b, and
so on. So, the maximum memory required for one-directional
search for solutions of size d is given by

N) = d.b".

Let us formulate a bidirectional search with forward and
backward tree depths of d1 and d2 respectively such that d,
d),andd2areintegersandd=dl +d2,andld)-d21 =Oor
I, depending on whether d is even or odd respectively. The
maximum memory required in this search is given by

N2 = d).b'" + d2.b"'.

The ratio of maximum memory required for the two search
processes IS

N2/N) = (d[.b'" + dz.b"2)/(d.b")

= (d).b'" + d2.b"')/(d.b"'+"')

= d) /[(d) + d2).b"'] + dzi[(d[ + d2).b"'].

6.1.1. Case A. For dj = dz (i.e., d is even)

N2/Nj = l/b",.

For b 2: I, bdj2: I. Therefore, NI/N2 2: I for b 2: I. This
means that bidirectional search requires more memory than
unidirectional search for problems where d is even and b >
I.

6.1.2. Case B. For d2 = dj + I (i.e., d is odd)

dj/(dj + d2) = d) /(2.dj + I) < 1/2,

d2/(d) + d2) = d2/(2.d) - I) = 1/(2 - l/d2).

This is maximum when d2 is minimum, which is 2. There-
fore, the maximum value of d2/(d) + d2) is given by

d2/(dj + d2)max = 1(2- 1/2) = 2/3.

;'..
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Using the maximum values of the two ratios from Eqs. (5)
and (6) into Eq. (3),

N2/N) < (I/2h'" + 2/3h"') = (I/2b + 2/3)/b"'. (8)

(1/2b + 2/3)/bdj is maximum when d, is minimum (as
b > I). Therefore,

N2/N) < (I/2b + 2/3). (9)

A sufficient condition for N2/N) < I is the following:

(I/2b + 2/3) :::; I --7 b 2: 1.5. (10)

Therefore, even for small problem sizes, bidirectional search
consumes less memory than unidirectional search for branch-
ing factors larger than 1.5. For instance, for a branching
factor b of 2 and a depth of 4, (N2/Nj) = 1/22 = 1/4.

(I) 6.2. Comparison of the number of computations
required

As before, b is the branching factor, that is, the average
number of building blocks at each stage of the tree-spawning
process. We define d as before, as the number of times the
tree is branched out, that is, the number of building blocks
allowed to be used in composing a single solution. Let I be
the number of building blocks in the database, and v the
number of variables these building blocks share among them.
If each building block is taken as a link between its input
and output variables (nodes), then a database could be seen
as a collection of links between the nodes shared by them.
We can then define a synthesis problem as that of finding
paths between any two prespecified nodes in the database
using a predefined number of links between them. Thus, the
average number of links available from any node in the
database is the average branching factor for this problem,
and is given by

(2)

(3)

h = f/v. (II)
(4)

(5)

In the case of one-directional search, at the beginning of
the process, each building block in the database needs to be
checked to see if its input matches the required input of the
problem, thus requiring I checking. Once those building
blocks that match are selected (its number is the same on an
average as the branching factor b), we need, at the second
step, to check, for each of these, each of the building blocks
in the database to see which of them match the output of the
branches of the tree (each of which contains one building
block) at the end of the first step. Thus, this second step
ends up on an average with b matches for each building
block from the first step, requiring a total of b.l checking on
branches of size I, thus requiring b.1 computations; this
produces a list of b.b branches, each of the length of two
building blocks. In the third step. each building block from
the database needs matching against each of the past b.b

(6)

(7)
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branches of length two, requiring a further b.b.l checking
and consequent 2.b.b.l computations, thus producing b.b.b
matches as a result of this. This goes on for d steps. Thus
the total number of computations required at the end of d
steps is

M, = 1.l+1.b.l+2.b.b.l+3.b.h.h.l+ ... +(d-1).hd-I.I.

(12)

In the case of the bidirectional search, two smaller searches

go on exactly as in the above one-directional search, with
depths d] and d2 such that d] and d2 are integers and d =
d] + d2, and Id] - d21 = 0 or I, depending on whether d is
even or odd respectively. At the end of the two search pro-
cesses, two sets of partial solutions (the leaf nodes of the
trees spawned) are produced, which need to be matched
against each other to see which partial solutions from one
set could be linked to which from the other so as to form

complete solutions as a result. As the size of these sets are
b'" and b"2 (the number of matches at the end of search for
d] and d2 steps, respectively), the number of checks re-
quired is given by the product of these two, where the size
of each branch on which the checking is performed on av-
erage is O.5.(d] + d2). So, the maximum total number of
computations (which is the product of the number of checks
and the size of the branches on which these checks are

performed) is given by M2 as follows

M2 = [1.1+ I.b.1 + 2.b.b.1 + ... + (d] -1).bd,-I.i]

+ [1.1+ b.1+ b.b.1+ ... + (d2 - I).bd2-1.1]

+ 0.5.(dl + d2).bd'.b'\

Therefore, the difference between M] and M2 is given by

M, - M1 > [d,.bd'.1 + (d] + 1).bd,+'.1+ ... + (d - 1).bd-I.i]

- [1.1 + b.1+ h.b.1+ ... + (d2- 1).bd'-].I]

- d2.hd'.bd"

as d2 2: O.5.(d] + d2).

6.2.1. Case A. dj = d2 = 1

M, - M2 = (I + b.l) - (I + I + b2) = b.l- 1- h2

For M] > M2' the following condition must hold

b.l> 1- h2 -7 hll < (1 - lib),

for a problem where d is 2 (as d] and d2 are each I, and d =
dl + d2).FromEq. (11), lis b/v. In this casev is at least 3
(as d is 2). Thus the minimum value of l is 3b, which makes
the maximum value of bll as 1/3. Therefore, a sufficient

condition for Eq. (16) to hold is

1/3 < (1- lib) -7 b > 1.5.

:'.
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Therefore, for all values of b larger than 1.5, bidirectional
search is more efficient than unidirectional search when

solutions having two building blocks are generated.

6.2.2. Case B. dj = I; d2 = 2

M, - M2 = (I + b.l + 2.I.h2) - (I + h.1 + t + b.1+ 2h")

-7 2.I.b2 - (I + h.1 + 2h"). (18)

For M1 > M2' the following condition must hold:

2.I.b2 > (I + b.t + 2b") -7 hll < (1 - Ilb)(1 + 2Ib). (19)

For this case, d is 3 (as d = d] + d2). From Eq. (11), lis blu.
In this case v is at least 4 (as d is 3, and the number of nodes
in the database is larger than d). The minimum value of l is
4b, which makes the maximum value of bll as 1/4. Thus a
sufficient condition for Eq. (16) to hold is

1/4 < (1- Ilb)(1 + 1/2b) -7 b > 1.22. (20)

Therefore, for all values of b larger than 1.22, bidirectional
search is more efficient than unidirectional search when

solutions having three building blocks are synthesized.

6.2.3. Case C. dj ;::2; d2 ;:: 2

From Eq. (14), M] is greater than M2 as long as the fol-
lowing inequality holds

A> B, (21)

where

(13) A = d,.hd'.1 + (d] + 1).hd'+].1+ ... + (d - 1).h'H, (22)

B= l.l+b.l+b.h./+ ... +(d2-1).hd, 'I + d2.bd'.hd2. (23)

(14)

Now the first term in A is larger than that in B as d].b'I, is
larger than I. Similarly, the second term in A is larger than
that in B as (d] + 1).b'" +] is larger than b. In a similar way
each term in A is larger than its corresponding term in B.
Now, A has d2 terms, whereas B has (d2 + I) terms. There-
fore, a sufficient condition for A > B to hold is for the last

two terms of B to be smaller than or equal to the last term in
A. This can be written as

(15)
(d - I).bd-' 2: d2.bd'.h'" + (d2 - I).hd'-'.I. (24)

6.2.3.1. Case C1. dl = d2. Equation 24, after using d] =
d2 and d = d] + d2, becomes

(16)
b/[(2 -lld2).I] + 1/[{1 + 1/(1- Ild,)}.bd,]::; I. (25)

(17)

The left hand side of Eq. (25) cannot be greater than the
sum of the maximum values of its two terms. Therefore, if
the sum of the maximum values of its two terms is less than

or equal to I, so will be the inequality. The first term is
maximum when its denominator is minimum, which is true

when d2 is minimum (i.e., when d2 is 2). As the minimum
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value of I is 5b (since I is v.b, and since v, the number of
variables in the database, has to be at least 5 for synthesiz-
ing solutions having four building blocks that must share
among them at least five variables). So the maximum value
of the first term is given by

b/[(2 - l/d2)./]max = b/[(2 - 1/2)./] = 2b/(3.5.b) = 2/15.

(26)

The second term cannot be larger than 1/2bd,. Substitut-
ing this value and the value of the first term from Eq. (26)
into Inequality (25) provides the following sufficient con-
dition for Inequality (25) to hold:

2/15 + 1/(2bd,) < 1-) bd, > 15/26. (27)

This is true for b 2: I. This means that for synthesis of
solutions of size 4 onwards, bidirectional search is always
more efficient than unidirectional search, as long as the
branching factor b is 1 or more.

6.2.3.2. Case C2. dj = d2 - J; dj ;::::2; d2 ;::::3. Equa-

tion 24, after using d1 = d2 - I and d = d1 + d2, becomes

b/[(2 - 2/d2)./] + 1/(2.bd,) ::; 1. (28)

Inequality 28 cannot be greater than the sum of the maxi-
mum values of its two terms. Therefore, if the sum of the

maximum values of its two terms is less than or equal to 1,
so will be the inequality. The first term is maximum when
its denominator is minimum, which is true when d2 is min-
imum (i.e., when d2 is 3). As the minimum value of I is 6b
(since I is v.b, and since v, the number of variables in the
database, has to be at least 6 for synthesizing solutions
having five building blocks that must share among them at
least six variables). So the maximum value of the first term
is given by

b/[(2 - 2/d2).I]max = b/[(2 - 2/3)./] = 3b/(4.6.b) = 1/8.

(29)

The second term cannot be larger than Ij2bd,. Substitut-
ing this value and the value of the first term from Eq. (29)
into Inequality (28) provides the following sufficient con-
dition for Inequality (28) to hold:

1/8 + 1/(2bd,) < 1 -)bd, > 8/14. (30)

This is true for b 2: I. This means that for synthesis of
solutions of size 5 onwards, bidirectional search is always
more efficient computationally than unidirectional search,
as long as the branching factor b is I or more. For instance,
the ratio of numl1er of computations required for the two
search algorithms, for a branching factor of 2 and for syn-
thesizing solutions having four building blocks (i.e., d = 4)
using a small database (with I = 20) is given by

0 using
DB II

. using
DBI

:..
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Fig. 5. Number of computations required against tree depth in unidirec-
tional search.

5

depth of Tree (d)

M, /M2 = 20[1 + (1.2) + (2.2.2) + (3.2.2.2)]/

[20.{1 + (1.2) + I + (I.2)} + (2.22.22)]

= 700/152

= 4.6.

The plots in Figures 5-10 show, for the two search algo-
rithms, how computational load and memory estimates vary
with the searched tree depth (d), and how their ratios vary

0 Using
DB II

. Using
DBI

5 10

depth of tree (d)

Fig. 6. Number of computations required against depth of tree in bidirec-
tional search.
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Fig. 7. Amount of memory required against depth of tree in unidirec-
tional search.

with the tree depth. All are plotted for an accelerometer
design problem. Figures 5 and 7 show these for the unidi-
rectional search algorithm, and Figures 6 and 8 for bidirec-

tional search. Figures 9 and 10 show the ratio of computation
and memory estimates for these two search algorithms. Each
figure has two plots, one using a small database (called
database I; see the Appendix) which has 35 links (I) and 18
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depth of tree Cd)

Fig. 8. Amount of memory required against depth of tree in bidirectional
search.
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Fig. 9. Ratio of computations required versus depth of tree in the two-
search algorithms.

nodes (v), and the other using a larger database (called
database II; see the Appendix) having 53 links and 21 nodes.

In general, it can be seen, by comparing the two plots in
each of the figures, that the computation and memory re-
quired increases with the increase in the size of the data-
base. Bidirectional search does better than unidirectional

search, and, as can be seen clearly from Figures 9 and 10, it
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Fig. 10. Ratio of memory required versus depth of tree in the two-search
algorithms.
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does increasingly better than unidirectional search as the
size of the solution or size of the database is increased.

Even for a small database like database I (35 links) with a
low branching factor (1.57), the memory ratio is always in
favor of bidirectional search except for the smallest of tree
depths (:::;3), going up as high as 4 for a tree of depth 10
(see Fig. 10). The ratio of the number of computations fol-
lows a similar trend (Fig. 9). The effect of a larger database
can be seen by comparing the two plots in each figure. The
size of database II is less than twice that of database I,
having 53 links, and has a branching factor of 2.52, which
is a little more than 1.5 times that of database I. However,
the ratio of memory required goes up from 20 for database
I to 110 for database II at a tree depth of 10, and the ratio of
computations goes up from 20 for database I to 40 for data-
base II, showing the advantage of bidirectional search over
unidirectional in synthesizing large solutions using large
databases. As both the plot-sets show a similar trend, ir-
respective of their using different databases, this demon-
strates the generic nature of the efficiency of bidirectional
search over unidirectional search, for the class of problems
investigated here.

7. COMPARISON OF THEORETICAL
ESTIMATES WITH ACTUAL
PERFORMANCE

Figure 11 is a plot of the ratio of the amount of computations
required between unidirectional search and bidirectional

search against solution size, for an acceleration-sensing prob-

..
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lem using the same database of building blocks. Three plots
are given: one is an estimate of the computation ratio using
the average value of the branching factors in the database,
another is an estimate using the actual values of branching
factors, and the third one is a plot of the actual ratio of com-
putations. Figure 12 is a similar plot for the ratio of memory
required by the two algorithms for the same problem.

The estimate using average branching factors, in this par-
ticular case, provides an overestimate of the ratio. This is
because in its calculation, the same branching factor is used
to calculate computation and memory required for the for-
ward and backward search in the bidirectional search. In

reality, the backward branching factor in this case is much
larger than the average branching factor. Consequently, back-
ward search takes much more memory and computation in
reality than is estimated using the average branching factor.
In other words, the ratio of computation or memory in uni-
directional search to bidirectional search is overestimated.

If actual values of branching factors are used instead, the
estimates follow the actual ratios more closely, as can be
seen from Figures 11-12. Even then, as the tree depth in-
creases, the estimate becomes more conservative than the

actual ratio. This is because the estimate still provides an
approximate model of how the algorithms operate, in which
the exact number of calculations and the exact size of lists

on which these calculations are performed every time a
major step is to be taken (such as further proliferation of the
tree, or concatenation of two partial branches) are approx-
imated as a single calculation on an average-sized list. For
instance, while seven different calculations, each on slightly
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Fig. 11. Comparison of theoretical estimates with actual performance (computation).



. actual performancE

0 estimation using
actual b

0 estimation using

average b

'..
'1

A. Chakrabarti

0
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Fig. 12. Comparison of theoretical estimates with actual performance (memory).

different lists are performed on the list of partial solutions
from forward and backward searches to concatenate them

into complete solutions, this is represented in the estimate
as a single calculation on a list of an average size. The
estimate, when used with realistic values of the branching
factors, however, provides a conservative estimate of how
the algorithms compare in their performance.

8, OPTIMAL DIVISION OF PROBLEM SIZE IN
THE BIDIRECTIONAL SEARCH
ALGORITHM

The memory and computation required for the bidirectional
search algorithm is dependent on the size of the tree that its
forward and backward search processes need to explore; it
is also dependent on the branching factor of the database.
This branching-factor sensitivity was first noted by Pohl
(l971) in the context of shortest -path problems, where he
used this as a basis for a heuristic for dividing search effi-
ciently between forward and backward search. However,
the size of the paths to be compared in shortest-path prob-
lems can be variable, and therefore an optimum division of
tree depths between forward and backward search is not
possible. In the problems investigated in this research, a
problem of depth of tree d is prespecified, and therefore can
be subdivided into tree depths for forward and backward
search in a finite number of alternative ways so long as
their sum is equal to d, and as the forward and backward
branching factors need not be the same, we need to ensure
that the forward and backward search depths are chosen so

as to give optimal or near-optimal computational perfor-
mance. In the following, we discuss two cases, one where
the forward branching factor is the same as the backward
branching factor, and one where they are not.

8.1. Branching factors having the same value

Let the branching factor, as before, be b, and the forward
and backward tree depths be d, and d2 respectively. We
derive first the optimal value for these for minimum mem-
ory and then those for minimum computation.

8.1.1. Minimum memory requirement

A theoretical estimate for the amount of memory re-
quired in bidirectional search is given by Eq. (2), which is
repeated below:

N2 = d,.bd, + d2.bd2. (2)

This equation has a single minima, which means that any
value of the above function will be greater than that given
by values of d1 and d2 at the minimum value. This is written
in terms of the following equations:

d,.bd, + d2.bd2< (d] - i).bd,-i + (d2 + i).bd2+i (31)

d].bd, + d2.bd2 < (d, + i).bd,+i + (d2 - i).bd,-i, (32)

where i is any integer value.

0
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8.1.1.1. Case A: dl = d2. Equation 31 can be simplified
as

d2.bd'.W.(d2 + i)/d2 - 1] > d1.bd'.[1 - (d1 - i)/W.d2)] ~

h!.(d2+ i)/d2 - I > 1 - (d] - i)/W.d2) ~

W - i)[1 - l/b! + i.W + I)/W.d])] > O. (33)

Equation 33 is always greater than zero for b greater than 1,
for both (bi - 1) and [1 - l/bi + i.(bi + 1)/(bi.d1)]are
greater than zero in this case.

As Eq. (32) is symmetrical to Eq. (31), that can also be
proved in a similar way.

8.1.1.2. Case B: d2 = dl + I. Equation31 can be sim-
plified as

d2.bd'.W.(dz + i)/d2 - I] > d].bd'.[1 - (d1 - i)/W.d2)] ~

(dz./d]).b.W.(d2 + i)/d2 - 1] > [1 - (d1 - i)/(b'.d2)] ~

W - i).[(ddd]).b - lib! + i.W + l)/W.d1)] > O. (34)

Equation 34 is always greater than zero for b greater than 1,
for both (bi - I) and [(d2./d]).b -l/bi + i.(bi + 1)/(bi.dj)]
are greater than zero in this case.

As Eq. (32) is symmetrical to Eq. (31), that can also be
proved in a similar way.

8.1.2. Minimum computation requirement

A theoretical estimate for the amount of computation re-
quired in bidirectional search is given by Eq. (13) which is
repeated below:

M2 = [1./ + Lb.l + 2.h.b.l + ... + (d] -l).bd'-]l]

+ [1.1+ b.l + b.b.l + ... + (d2 - l).bd21l]

+ 0.5.(d1 + d2).bd'.bd2. (13)

The value of M2 for (dl - i) and(d2+ i) canbe obtainedby
removing the last i terms from the first list and adding
further i terms to the second list in Eq. (13), and is given by

M2oow= [1./ + Lb. I + ... + (d1 - l).bd,-ll]

- (d] -l).bd'-].l- (d] - 2).bd,-2.1... - (d] - i).bd'-!.l

+ [I./+b.l+ ... +(d2-l).bd2-1.l]+(d2+i).bd'+!.1

+ (d2+ i -l).bd,+H.l... + d2.bd2.1

+ 0.5.(dl +dz).bd'.bd2,

(dz + i).bd'+!.l > (dl - J).bd,-l.l,

because for dj = d2: (d2 + i) 2: (d2 + 1) > (d] - 1) and
bd]+i > bd]-', and ford2 = d] + 1: (d2 + i) 2: (d2 + 1) >
(d, - I) and bd]+i > bd,-], even for d2 = dj - 1:
(d2 + i) 2: (d2 + 1).= d] > (d] -1) and bd]+i > bd,-I.

All the other terms subtracted from the first list are smaller

than (d] - I).bd'-].l, and all the other terms added to the

:..
1

77

second list are larger than (d2 + i).bd,+i.l. Therefore each
term added to the second list is larger than its correspond-
ing term subtracted from the first list. The last term of the
sum, O.5.(d] + d2).bd].bd2, is always the same irrespective
of the values of dj and d2, as long as their sum remains
constant (which is the case here). This means that M2newis
always larger than M2 for d] = d2, d2 = d] + I, and d2 =
d] - 1. As these relationships are symmetrical, this means
M2 is minimum at these conditions. When d is even, this is
true for d] = d2, and when d is odd this is true for both d2 =
d] + I and d2 = dj - 1. These are the same as for minimum
memory requirement.

8.2. Branching factors having different values

Let the forward and backward branching factors be bl and
b2, and their corresponding tree depths be d, and d2, respec-
tively. We derive first the optimal value for these for mini-
mum memory and then those for minimum computation.

8.2.1. Minimum memory requirement

The theoretical estimate for the amount of memory re-
quired in bidirectional search is given by

N2 = d] .b~/, + d2.h~2 (37)

For the above to be the minimum value, the following equa-
tions must hold:

(d] + l).bf' + (d2 - 1).b~2> d,.b~l, + d2.b~' (38)

(d2 + 1).b~2+ (d, _l).b~l, > d,.b~l, + d2.b~2. (39)

(35)

(36)

8.2.1.1. bI > b2. In Figure 13, the three curves Fl =
dj.b~/" F2 = d2.bf2, and Fl + F2 = d].b~' + d2.bf2 are
plotted for b] > b2. P is the point where Fl and F2 inter-
sect. On the right side of this point, an increase in Fl for a
given increase in d] , given by 1I, is necessarily greater than
a decrease in F2, given by 12, for the same decrease in d2
as the increase in d]. This is because Fl has a higher slope
than F2 at the same point, which gets even higher as one
tries to climb FI compared to the slope of Fl as one tries to
descend down it.

This means that all values of FI + F2 to the left of P

have values larger than that at P. In other words the mini-
mum value of Fl + F2 lies somewhere to the left of P

including itself.
At P, values of Fl and F2 are the same, which means

d1P.b~/II' = d2P.h~21', (40)

where dIP and d2P are values of dl and d2 at P.
As bl > b2, the above equation implies that diP < d2p.

This means that the minimum value for Fl + F2 will be

found for dim and d2m (i.e., values of dl and d2 where Fl +
F2 is minimum), such that dIm S; dIP; d2m 2: d2P' such that
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d2

Fig.B. PlotofcurvesFl =d,.b~l',F2=d2.b~2,andFl +F2=d,.b~l, +
d2.b~2.

dim + d2m= dIP + d2P = dl + d2. Values of dim and d2m can
be found by solving Eq. (37) numerically.

8.2.1.2. b2 > bi. As Eq. (37) is symmetrical in terms of
b2 and bl, this too can be proved as above.

8.2.2. Minimum computation requirement

The theoretical estimate for the amount of computation
required in bidirectional search is given by Eq. (13) which
is repeated below:

M2 = [1.1+ Lb.l + 2.b.b.l + ... + (di - l).bd,-I.l]

+ [1.1+ b.l + b.b.l + ... + (d2 -1).bd,-I.l]

+ O.5.(d,+dJ.bd'.bd2. (13)

The value of M2 for (dl -1) and (d2 + 1) can be obtained by
removing the last term from the first list and adding further
one term to the second list in Eq. (13), and is given by

Mz""W= [1.1 + Lb.l + ... + (di -1).bd,-i.l] - (di - I).bd,-I.l

+ [1.1+ b.l + ... + (d2 - I).bd2-'.l] + d2.bd2.l

+ O.5.(di + d2).bd'.bd,. (41)

For its value to be less than M2' the following equation
must hold:

d2.b~'.l > (di - l).b~I,-I.l--7 d2.b~2 > (dl -1).bf,-i.

For this point to be'minimum value, the following equation
also must hold:

d, .bf'.l > (dz - 1).b~2-i .l --7 di.bf' > (d2 - 1).b~,-i .
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From Figure 13, (diP - 1).bf,p-1 is on the left of P on
F 1, and therefore less than d2.bf2 , which is the value of F2
at P. So Eq. (42) holds for values of Fl and F2 at P. Sim-
ilarly, (d2P - 1).bf2P-1 is on the right of P on F2, and
therefore less than dl.bf' , which is the value of Fl at P. So
Eq. (43) holds for values of Fl and F2 at P. Therefore P is
in fact the point whose values of dIP and d2P gives the
minimum computation value. Again this will be true for
bi > b2, due to symmetry of Eq. (41).

Discussion in the above two subsections reveals that re-

quired memory and computation are both minimum for the
same values of dl and d2 only when memory required is
minimum at point P of Figure 1 (as this is also where the
amount of computation required is also minimum). If this is
not the case, both cannot be minimized together. One heu-
ristic that emerges is to use values close to P for a near-
optimum performance.

dl
9. SUMMARY AND CONCLUSIONS

(42)

The effectiveness and efficiency of an algorithm-database
combination are defined here as the two essential features

of the quality of a computational-synthesis procedure. This
article focuses on the efficiency aspect of the algorithm of
such procedures. The article proposes a bidirectional search
algorithm for compositional synthesis of designs using a
database of building blocks. Although bidirectional search
has been investigated before, it has never before been
investigated for compositional synthesis, which is dis-
tinct from the earlier problems in at least two ways: all
possible paths between the input and output are sought,
and each of these paths have the same size. The algo-
rithm has been implemented in a computer program
using LispWorksTM (Harlequin, 1991), and has been
compared for its computational performance with a uni-
directional synthesis algorithm. This comparison shows
that the proposed algorithm is better in computational per-
formance (memory and computation required) except
for problems of very small size, and gets increasingly bet-
ter for solutions of larger size using larger databases of
building blocks. Theoretical estimates have also been
made for optimum performance of the algorithm when
it has unequal forward and backward branching factors,
which provide useful heuristics for enabling the algorithm
to provide (near- )optimal computational performance.
The algorithm has been tested on several problems and
databases. The relative computer performance has been
consistent, which demonstrates the generic nature of
its efficiency. This means that except for very sparse
databases (i.e., with low branching factors), bidirectional
search provides marked improvement in efficiency com-
pared to unidirectional search. However, several things
remain to be tested. One is the use of bidirectional search

for multiple input-output problems, where the computa-
tional complexity of the bookkeeping task may over-
whelm the advantages of bidirectional search. The other(43)
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issue is to investigate the use of bidirectional search in
conjunction with further heuristics, such as using further
intermediate states as goal states so as to turn this into a
multidirectional search, when even with the added effi-
ciency of bidirectional search, it is difficult for the search
to be effective.
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Fig. AI. Database I having 18 variables and 35 building blocks.

APPENDIX A: DATABASES USED IN ASSESSING PERFORMANCE OF THE ALGORITHMS

The databases are shown here in Figures Al and A2 as a network of variables that are linked together by building blocks.
So, each arrow is a building block, that is, a link between two variables.
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Fig. A2. Database II having 21 variables and 53 building blocks.


