

PBL South Asia

Mumbai Workshop for faculty and advanced students

IIT Bombay/ Mumbai, India 19-30 August 2019

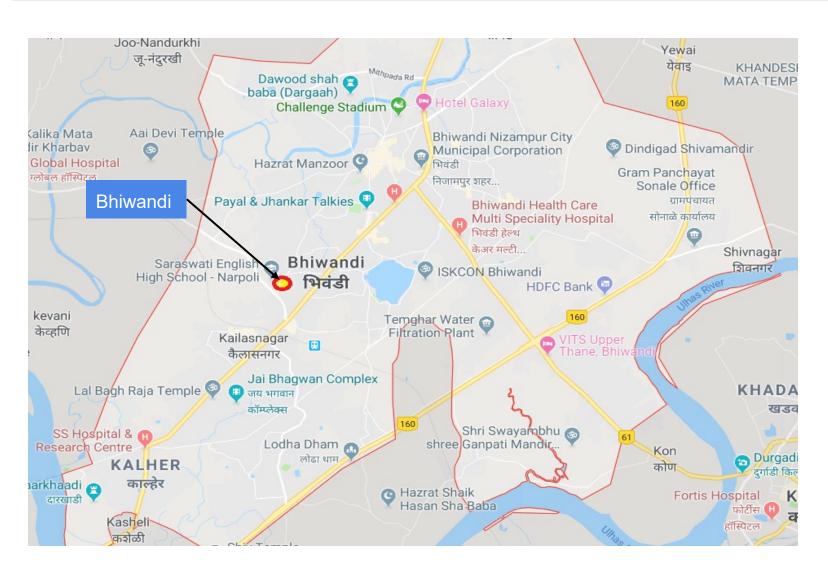
Modular Housing Scheme for Bhiwandi Locality

Team Background

	Prof. Venkata Santosh Kumar Delhi – Team Mentor				
	Expertise in terms of Modular Housing	Background			
Fabio	Flexibility for long-term usage, Recycling materials	Architecture			
Kishor	Affordability, repeatability, scalability	Civil Engineering			
Laura	Ventilation	Building Services Engineering			
Paridhi	Product Design & Liveability	Mechanical Engineering			
Pravakar	Climate change, Adaptation and Mitigation	Environment and Climate Change			
Rosa	Urban scale: Social aspect & Culture	Urban Design			
Sudeep	Locality and its impact in modular design	Civil Engineering			
Thrinley	Energy Efficiency, Materials	Electrical Engineering			

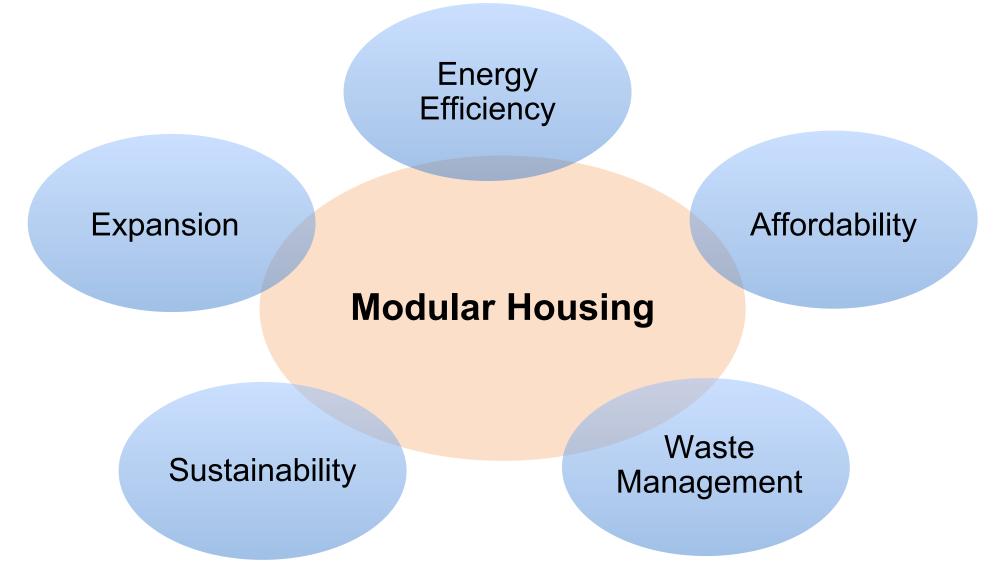
How to provide affordable and modular housing in Bhiwandi?

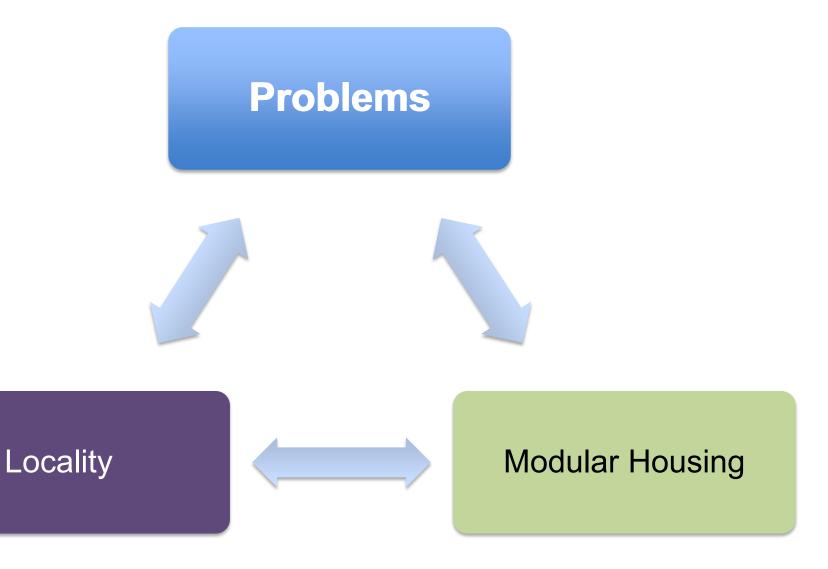
Modularity


System Boundary

Site Location in **Bhiwandi**

Initial Discussions





Our Pointers for Modular Housing

Problem Identification

List of probable problems for locality

from our perspective

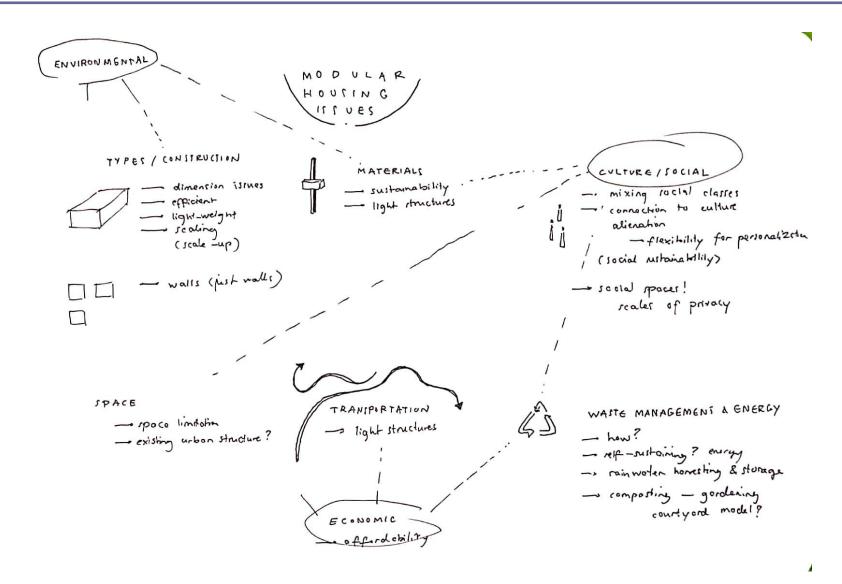
- 1. Accommodating low income group
- 2. Risk of **flooding** in monsoon
- 3. Adaptation capacity
- 4. Risk of high temperature and humidity
- 5. Scarcity of pure drinking water
- 6. Improper waste management system
- 7. Ground/land stratas
- 8. Availability of **space** for construction
- 9. Risk of earthquakes

List of probable problems for modular housing

from our perspective

Aspects we considered for problem identification

1. Environmental sustainability


1. Socio-cultural adaptation

List of probable problems for modular housing

Preliminary list of **Requirements**

- Need low cost rental/own housing
- 2. Modular system should withstand flooding
- 3. Modular system should withstand high temperature and humidity
- 4. Need provision for pure drinking water
- 5. It should inhibit waste management system
- 6. It should facilitate construction in different ground stratas
- 7. It should withstand mild to severe earthquakes
- 8. Modules should be **scalable**
- 9. Modules should be lightweight to facilitate transportation

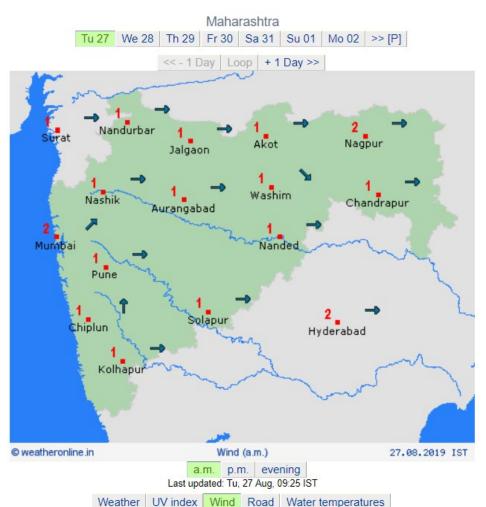
Preliminary list of **Requirements**

- 10. Should facilitate expansion in future
- 11. Materials and construction process should be sustainable
- 12. Modular system should encourage socio-cultural interaction
- 13. Should **provide flexibility** for personalisation

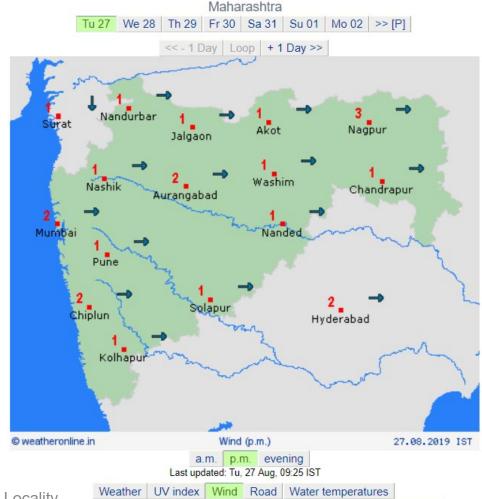
Field Visit inside IIT

Bhiwandi

Climate Data for Bhiwandi


	Climate data for Bhiwandi						
Month	Jan	Feb	Mar	Apr	May	Jun	Jul
Record high °C (°F)	34.4	35.3	37.6	39.5	42.8	39.6	33.5
	(93.9)	(95.5)	(99.7)	(103.1)	(109.0)	(103.3)	(92.3)
Average high °C (°F)	29.2	30.5	32.4	34.2	34.4	31.2	29.1
	(84.6)	(86.9)	(90.3)	(93.6)	(93.9)	(88.2)	(84.4)
Average low °C (°F)	15.1	16.5	19.5	22.7	25.2	25.1	24.2
	(59.2)	(61.7)	(67.1)	(72.9)	(77.4)	(77.2)	(75.6)
Record low °C (°F)	6.7	8.3	16.5	18.6	20.2	21.1	19.6
	(44.1)	(46.9)	(61.7)	(65.5)	(68.4)	(70.0)	(67.3)
Average rainfall mm (inches)	3.6	1.0	1.3	2.0	21.3	502.4	1,015.7
	(0.14)	(0.04)	(0.05)	(0.08)	(0.84)	(19.78)	(39.99)
Average rainy days	0	0	0	0	1	14	31
Mean monthly sunshine hours	269.4	259.3	272.9	286.4	295.6	143.3	73.2

Month	Aug	Sep	Oct	Nov	Dec	Year
Record high °C (°F)	33.2	34.5	37.6	36.7	34.5	42.8
	(91.8)	(94.1)	(99.7)	(98.1)	(94.1)	(109.0)
Average high °C (°F)	28.6	29.4	33.3	32.4	31.2	31.3
	(83.5)	(84.9)	(91.9)	(90.3)	(88.2)	(88.3)
Average low °C (°F)	23.7	22.8	22.3	19.4	16.3	-1.1
	(74.7)	(73.0)	(72.1)	(66.9)	(61.3)	(30.0)
Record low °C (°F)	18.9	19.2	18.6	16.5	12.4	6.7
	(66.0)	(66.6)	(65.5)	(61.7)	(54.3)	(44.1)
Average rainfall mm (inches)	584.2	336.3	95.3	12.9	2.0	2,578
	(23.00)	(13.24)	(3.75)	(0.51)	(0.08)	(101.5)
Average rainy days	24	15	6	1	0	92
Mean monthly sunshine hours	71.2	157.5	234.5	245.6	254.2	2,563.1



Wind Flow Pattern in Bhiwandi

Forenoon

Afternoon

Population tentative

- Local population: 0.7 million (2011 Census)
- Nature of Industry: Textile
- Labour
 - Low income: (80% migrated)
- Average labour income: Rs. 400 to 500 per day

(Source: India Today, June 29, 2018)

Summary of the first week

Design/structures

- 1. Fixed frameworks but can also be assembled in different ways
- 2. Modularity created through walls and the division of different spaces
- 3. Room for personalization through modularity etc.
- 4. Modular connectivity designed connections
- 5. Built on open spaces/demolition sites

Environment & energy

- 1. Space for green both for public/open/cultural spaces & water retention
- 2. Flood resilience through leveling from street level
- 3. Includes some net-zero energy concepts (self-sustaining?)
- 4. Waste management is taken care of

Affordability

1. Affordability through efficiency, pre-fabrication, mass production and lightweight, sustainable materials

Stakeholder Interview Questions

for Bhiwandi Inhabitants

Respondent's Background Information

Collecting general information related to respondent and family background.

Social aspect

- How long have they/their family stayed there?
- Why do they live here/where from did they come, if from outside Bhiwandi?
- Does Bhiwandi meet their expectations?
- What works what do they like?
- What doesn't what should be improved?
- Does if feel safe? Comfortable? Enjoyable? If so, what qualities make it so?
- What would they want if they moved to a new home? Ask both about home and surroundings (indoor and outdoor qualities)
- How do they understand modular housing? (Perhaps not a necessary question)

Stakeholder Interview Questions

for Bhiwandi Inhabitants

Environmental aspect

- What kind of annual environmental changes take place?
 How do they adapt to them?
- How does water management work?
- What about waste management?

Economic aspect

Is it affordable to live here?

Bhiwandi Field Visit

Bhiwandi Field Visit

Interview Summary

- Flooding Issue Low
- Wind Direction West to East
- Electricity Rs. 12,000 / Month
- Solar for electricity generation No
- Rain water harvesting No
- Modular housing will not work
- Solar water heater
- Modular housing will work, if it would offer spacious and affordable rental housing
- Currently, living in 1 room only, where labors cook and sleep, 3 labor/ room – Rs. 1800/month. (Rs. 1500 (Room Rent) + Rs. 300 (Electricity Charge))= Rs. 1800/3 labor.... Rs. 600/Person/Month
- No proper ventilation in room.
- 1RK and 1BHK would be the best option.

- Modular housing will work, if it would offer spacious and affordable rental housing
- 80% people from outside
- 1Rk would be a good option
- Drainage and solid waste management is poor
- Instead of salable component focus on rental homes.
- 1RK and 1 BHK are in demand
- 1RK 300 to 350 sq. ft. Rs. 3000/month
- 1BHK 500 to 550 Sq. ft. Rs. 4500/month
- New flat rate Rs. 3000 to 3500 sq. ft.
- Solid waste management No
- Modular housing will not work

Personas

(fictional target group)

Woman, 25 Textile industry worker

From a nearby rural area

Low-income, illiterate

Wants to live in Bhiwandi for max. 3 years to earn money and spend as little as possible

Needs a very cheap place to stay for rent - can share a room, but only with other women

Wants to receive guests and friends while in Bhiwandi

Man, 55 Local school teacher

Wants to live close to work because of the traffic

Married with no kids

Middle-income, literate

Wife works in the same school

Would like a spacious apartment with opportunities to modify his home

Likes to play music

Woman, 58 Housewife, husband died 5 years ago

1 child who is not married and lives with her, works in a nearby factory and dropped out of studies

Has respiratory issues

Man, 19 Just came to Bhiwandi from Uttarpradesh

Is looking for opportunities to earn

An acquaintance from his village lured him to come to Mumbai region

Man, 40

Textile industry worker, for the last 20 years

Low-income and illiterate

Married, two kids

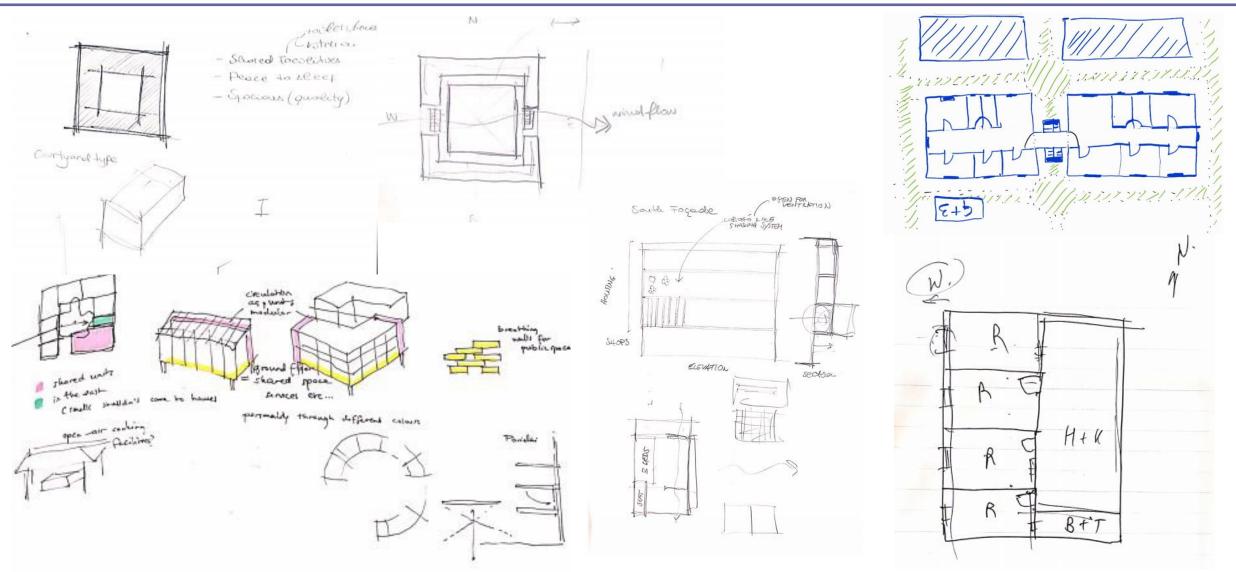
Family lives further away, but he would like to bring the family to Bhiwandi

Wants to rent a bigger place to stay in case family joins

Redefining Problem Statement

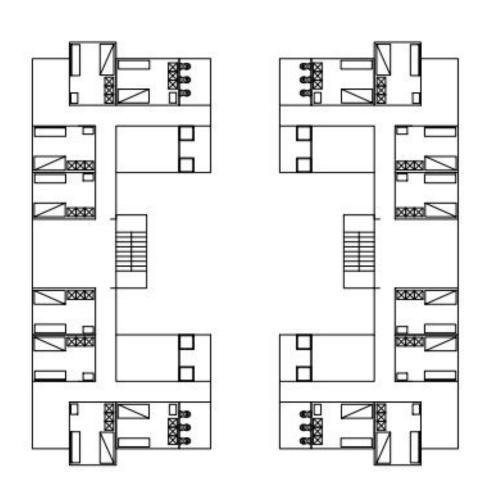
How to provide **affordable and modular housing** in Bhiwandi?

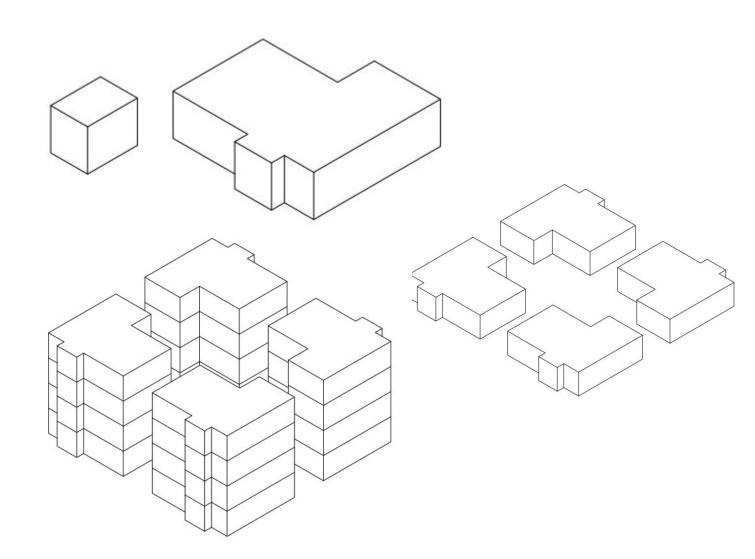
How to provide **affordable**, **safe and spacious housing** for Bhiwandi's **low-income labour**/workers through modular solutions?



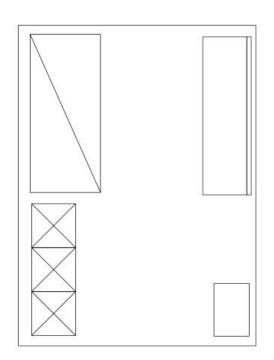
Prioritisation of **Requirements**

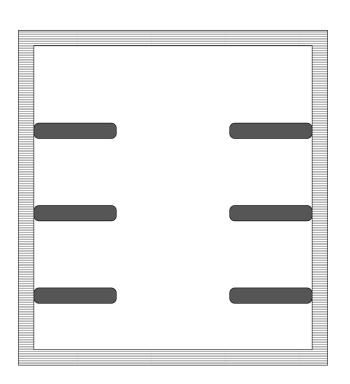
Requirements	Demand (D) / Wish (W)	Priority
Need low cost rental/own housing	D	1
Modules should be scalable and flexible	D	2
Should facilitate expansion in future	W	3
Materials and construction process should be sustainable	W	4
Need provision for pure drinking water	D	5
It should inhibit waste management system	D	6

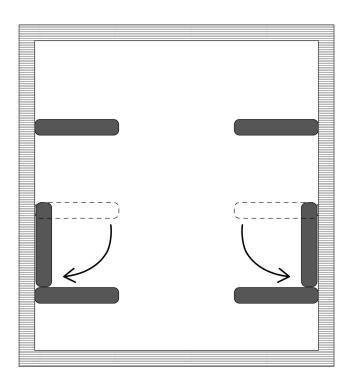



Concepts ideated based on Requirements

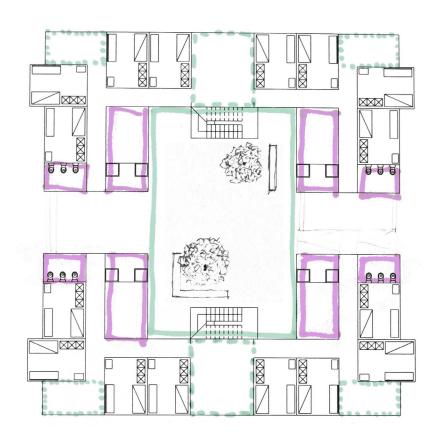
Concept merging



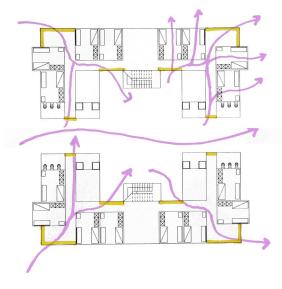

Concept merging



Concept merging



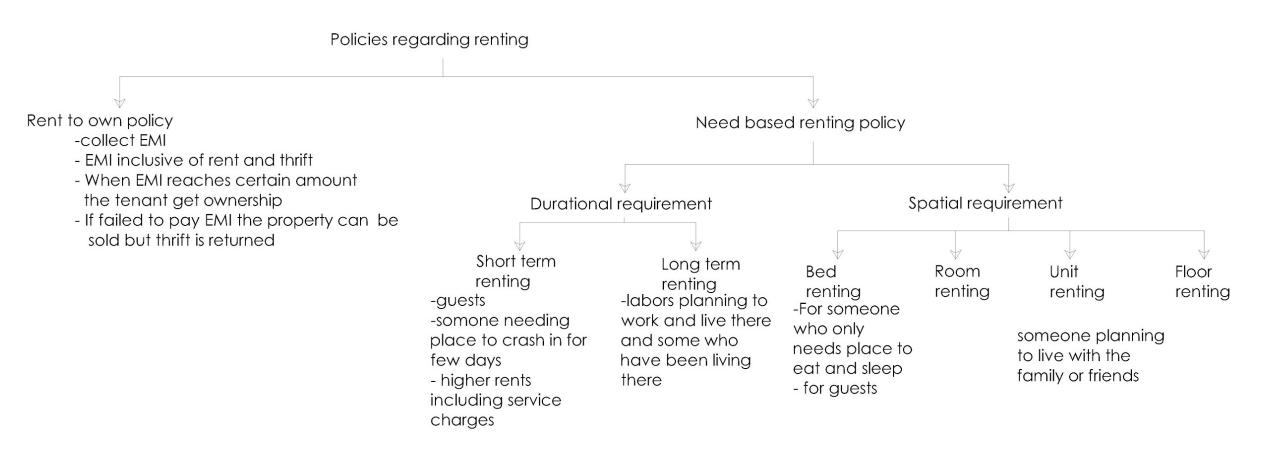



Concept studies: shared spaces and flexibility

Shared spaces and facilities of different scales

Modular flexibility over time: different configuration possibilities

Prevailing wind flows and breathing walls


Concept studies: energy and waste management

Smart energy and waste management systems

- Facilities for recycling
- Earning opportunities from energy production
 - Small-scale biogas production
 - Solar PV system integrated to the grid
- Energy saving
 - Smart switch-off systems
 - Solar water heating
 - Efficient lights and maximising daylight usage

Concept studies: policies and regulations

METHODS USED

- Challenge framing
- Secondary research
 learning the broader context
- Team building
- Brainstorming
- Observation
- Interviews
- Creating personas
 creating fictional characters who represent the
 target group
- Prototyping
- Sketching, drawing and modelling
- Collage

LIMITATIONS FACED

Project work

- Establishing and setting priorities
- Late field visit in relation to project schedule
- Limited time for team building
- Time constraint for understanding the problem context and defining a solution neutral problem statement

Interviews

- Trust issues, limited time for building trust
- Limited perspective from interviews

LEARNING OUTCOMES

- how to contribute in a multidisciplinary and diverse team environment
- unlearning solution-oriented approaches and converging our minds to problem complexity and systems thinking
- learning new and different perspectives

Thank you! Questions?

