PD215 Mechatronics

Week 2

Digital Hardware and Microcontrollers

Digital Hardware and Microcontrollers

- Digital hardware can preform multiple functions in mechatronics systems
 - Signal acquisition and processing
 - System monitoring and control
 - Switching
 - Information display
- In binary logic a variable can take only one of the two states (True or False, 1 or 0)
- Yet a digital device may have to process both logical and numerical data.
- Binary number system is used to perform numerical operations

Types of digital devices

- Combinational logic devices
 - Present inputs completely (and uniquely) determines the present outputs without using any past information (history) or memory.
- Sequential logic devices
 - Output depends on some form of past values of the inputs as well as the present values.
 - Some form of memory would be needed.

Logic Gates

• OR Gate

• AND Gate

• NOT Gate

NAND Gate

• XOR Gate

NOR Gate

Design of Logic Circuits

- Identify the input and output
- State the logic as Boolean relation
- Minimize or optimize the relation
- Using basic logic gates sketch the realization

• Multiplexer Circuit

- - Digital multiplexer selects one digital input from a group of input channels based on control signal

Let us say x,y are input channels, a is output, and c is the control signal.

Logic statements

a=x if c=0 a=y if c=1

 $a = x.\overline{c} + y.c$

Example 2

Adder Circuits

Α	В	S	С
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

'Half adder'

Sequential Logic Circuits

 Sequential logic circuits depend on past history and timing of the input

- Synchronous operation use a clock signal
- Asynchronous operation uses changes in the signal

Flip flops

Flip flops are bi-stable devices i.e. the out is either 1 or 0

• RS, JK, D flip flops

Latches Retains previous state until reset

A gated SR flipflop circuit diagram constructed from <u>AND</u> gates (on left) and <u>NOR</u> gates

Counters

Shift Register

A shift register shifts the stored data in a word one bit at a time.

 Right shift multiples the value by 2 in binary numbe system

Schmitt Trigger

- Triggering element with Hysteresis
- Noisy signal near switching threshold leads to chatter which can be eliminated by Schmitt trigger

Transfer characteristics of a Schmitt trigger

Integrated Circuits and Packaging

Using modern semiconductor fabrication technology it is possible to have over 10⁶ logic gates in a single device.

-VLSI (very large scale integration) 10⁴- 10⁶ gates

-Because of monolithic manufacturing it is not possible to repair single failed transistor

IC can be packaged in various form factors:

Dual Inline package (DIP) Small Outline Integrated Circuit (SOIC) Quad Flat Package (QFP)

Balls Grid array (BGA)

Microcontrollers

Microcontroller is dedicated special purpose digital compute device that is typically 'embedded' in application system.

- Central Processing Unit /microprocessor
- Memory for storing data
- Input/output circuitry (I/O)

Microprocessors

Brain of the microcontroller

- Arithmetic Logic Unit (ALU)
- Registers
- Control Unit

General architecture of a microprocessor

Buses: parallel conductors along which electrical signals are carried *Data Bus, Address Bus, Control Bus*

Memory

Non-Volatile memory

- ROM (Read Only Memory)
- PROM (programable ROM)
- EPROM (erasable and programable ROM)
- EEPROM (electrically erasable and programable ROM)

Program stored in ROM is called *firmware*

Volatile memory

- RAM (Random Access Memory
- DRAM and SRAM

Program stored in RAM is called *software*

Software can be loaded in to RAM from other storage devices e.g. Hard disk, floppy or keyboard

Input / Output devices

For transfer of data between microprocessor and external world. '**Peripheral devices**' exchange data with the microprocessor.

Programable I/O -polling used by microprocessor to read write data via these I/O

Digital Input/Output

Pulse width modulation (PWM)

Analog Input (via ADC)

Input / Output devices

Interrupt I/O – Peripheral device sends interrupt request signal to microprocessor. Microprocessor suspends execution of current activity, performs I/O and returns to original (interrupted activity)

Direct Memory Access DMA -

Selecting a Microcontroller

- Number of input/output pins
- Interfaces required
- Memory requirement
- Number of interrupt required
- Processing speed required

Programing a Microcontroller Application

- Define the problem
- Define the **algorithm** to be used
- Represent the algorithm with flow chart or Pseudocode
- Translate flow chart/algorithm into instruction microprocessor can process. Assembly language or C conde is converted into machine code
- Test and 'debug' the program

Algorithm

Set of process steps or rules to be followed for solving a problem

Flow Chart can be used to visually represent an algorithm

Pseudocode

Write program as sequence of operations of functions with decision steps

BEGIN

INITIALIZE I =2 IF I<=6 PRINT I INCREMENT I BY 2 ELSE NOP

STOP

Assembly Language

Microprocessor specifically needs **byte codes** corresponding to each action.

In assembly language *mnemonics* are used represent specific byte code followed by memory locations or data it should use

110 LDAA, \$0110 ; load

120 ADDA, #10h ; adds 10 hexadecimal to number in Accumulator A

130 DEC, R3; Decrement register R3 by 1LabelOp-codeOperandCommentComment

8051 program

; Addition of two numbers

NUM1	EQU	20H	; location of number 1
NUM2	EQU	21H	; location of number 2
SUM	EQU	22H	; location for the sum
	ORG	8000H	; address of start of user RAM
START	MOV	A,NUM1	; load number 1 into acc. A
	ADD	A,NUM2	; add number 2 to A
	MOV	SUM,A	; save the sum to address 22H
	END		

PIC program

; Addition of two numb

Num1	equ	H'20'	; location of number 1
Num2	equ	H'21'	; location of number 2
Sum	equ	H'22'	; location for the sum
	org	H'000'	; address of start of user RAM
Start	movlw	Num1	; load number 1 into w
	addlw	Num2	; add number 2 to w
	movwf	Sum	; save the sum H'22'
	End		

Assembly language Instruction sets

Data transfer/movement Load, Store, Move, Clear Arithmetic Add, Decrement, Increment, Compare Logical ADD, OR, Exclusive-OR, Logical Shift, Arithmetic Shift, Rotate **Program Control** Jump, Branch, Halt/Stop

Subroutines

Block of program might be used a number of times

- As subroutine may be called number of times there is need to store the program counter in Last In First Out (LIFO) manner.
- Delay subroutine can be used for timing the operations of a microcontroller

Lookup Tables

- Indexed addressing can be used to lookup values in a table
- Examples: square of integers can be stored as a table and directly used as needed instead of doing the arithmetic

C Program

C is a *high level* programing language which is often used instead of Assembly language

Assembly language is different for different microcontroller while C language is standardized.

main() program is called as an entry point and various subroutines are called from within that

Extensive programing feature are available:

Branches and Loops

Pointers

Header files and libraries of functions

Arduino

The Arduino project started in 2003 as a program for students at the *Interaction Design Institute Ivrea in Ivrea, Italy*

Combination of hardware and software to enable low cost and easy way to build devices that interact with the environment via sensor and actuators

Arduino IDE (Integrated Development Environment) supports c and c++ style programing

setup() loop()

Thursday lab session

Some practical exercises with Arduino hardware and software

- Create binary clock
- Interrupt and polling switching

Please bring Arduino development board, Laptop with Arduino IDE, breadboard, LEDs and resistor kit